Transmission ITP **Ops Parameters** PJM State & Member Training Dept. www.pjm.com | Public PJM©2020 #### **Objectives** #### Students will be able to: - Define the purpose of: - Thermal, voltage and stability limits - System Operating Limits (SOLs) - Interconnection Reliability Operating Limits (IROLs) - Define PJM's thermal operating criteria - State the consequence of violating thermal limits - State the actions to control violations of thermal limits #### **Objectives** - Describe how IROLs are determined and monitored in PJM - Identify the IROLs in the PJM footprint - Define PJM's voltage operating criteria - State the consequences of violating voltage limits - State the actions to control violations of voltage limits - Identify PJM's voltage schedule guidelines - Describe the effects of capacitors & reactors on voltage levels on the BES #### **Objectives** - Identify which reactive resources can be switched without instruction from PJM - Describe the effects of LTCs & PARs on the voltage profile of the BES - Identify the requirements to submit information for outages of reactive resources - Describe the purpose of the reactive testing program # **Purpose of Limits** #### **Definitions** - Thermal Limit/Rating - A boundary on the current carrying capability of equipment to prevent operation at excessive temperatures - A thermal restriction is placed on every piece of equipment that carries current 6 - Most commonly stated in MVA but also could be in Amps - Varies with - Temperature (16 temperature sets; 8 day and 8 night) - Wind speed (Ratings calculated at fixed wind speed) - Daylight intensity (Day vs Night ratings) - Equipment (Various limitations on equipment) - Time of applied current (Normal, Long/Short-Term Emergency, Load Dump) ### **Determination of Thermal Limits/Ratings** - Current Carrying Capability - Depends on ability to dissipate heat - Current flowing through conductor heats it up - Heat is dissipated through I²R losses in the conductor ### **Determination of Thermal Limits/Ratings** - Factors Effecting Ratings - Season/Ambient Temperature - How fast can heat from the device be transferred to the air - As ambient temperature decreases, heat transfer increases - As ambient temperature increases, heat transfer decreases - PJM has 16 "Ambient-adjusted" Rating sets with a set of 8 for the night period and a set of 8 for the day period, each with three ratings for each monitored facility 8 #### Time - As the current increases, it takes less time to incur damage to equipment - PJM uses Normal, Long/Short-Term Emergency, Load Dump Rating sets ### **Determination of Thermal Limits/Ratings** ### **Rating Sets Definition** - All equipment ratings are provided by the owner of the equipment but are based on PJM's rating methodology - Normal (Continuous) Rating - Equipment can operate at this level for any length of time without incurring damage - Emergency Rating (Long-Term LTE or Short-Term STE) - Used to trigger contingency operation - Equipment can be damaged if rating exceeded in real-time - Load Dump Rating - Aids system operator in identifying speed to correct overload - Operation at Load Dump Rating for 15 minutes should not cause line to trip - Shed load to return actual flow under Load Dump Rating within 5 minutes ### **Thermal Limits** - LTE and STE limit are identical in most cases - Many equipment limitations possible: Conductor, CB, CT, Meter, Relay, Clearance, Transformer, Wave Trap, Other | Temperature | Normal Limit | Long-Term
Emergency
Limit | Short-Term
Emergency
Limit | Load Dump
Limit | |-------------|--------------|---------------------------------|----------------------------------|--------------------| | 95° | 2650 | 3015 | 3015 | 3467 | | 86° | 2725 | 3090 | 3090 | 3554 | | 77° | 2780 | 3145 | 3145 | 3617 | | 68° | 2830 | 3195 | 3195 | 3674 | | 59° | 2849 | 3250 | 3250 | 3738 | | 50° | 2855 | 3300 | 3300 | 3795 | | 41° | 2855 | 3350 | 3350 | 3853 | | 32° | 2855 | 3405 | 3405 | 3916 | ### **Equipment Ratings – Dynamic vs. Static** - As previously stated, the rating for a piece of equipment is determined by how effectively the equipment can dissipate the heat generated within it by the flow of power - Wind, rain/snow, or significant shade effects may allow equipment to exceed its default rating set for a given temperature, because it dissipate more heat - By using Dynamic ratings, we can make adjustments to the default ratings set to allow for higher flow on a facility when conditions permit ### **Equipment Ratings – Dynamic vs. Static** - Additional equipment needs to be installed in the field to: - Allow real-time monitoring of the specific conditions occurring on the facility with the dynamic ratings, and - Send those readings back to the company (and PJM) EMS to determine the adjusted ratings to be used - PJM has used Dynamic ratings at selected facilities in the PS area for several years to help reduce congestion costs ### **Equipment Ratings – Variations Across the Footprint** - PJM uses the actual temperatures in each zone to determine that zone's rating set - Some zones (i.e. AEP) have multiple sub-zones because of their size - If conditions are such that variations in temperatures are severe across the subzones, different rating sets can be used - If a line of thunderstorms is crossing the footprint in the summer, it may be cooler behind the storm system - The western sub-zone of AEP may be 10 degrees or more cooler than the eastern subzones ### **Equipment Ratings – Variations across the footprint** **Mid-Atlantic** | Zone | Reference City | | | | |------|-----------------|--|--|--| | PS | Newark, NJ | | | | | PE | Philadelphia PA | | | | | PL | Allentown, PA | | | | | JC | Morristown, NJ | | | | | ME | Reading, PA | | | | | PN | Erie, PA | | | | | PN | Johnstown, PA | | | | Mid-Atlantic/Southern | Zone | Reference City | | | | |------|-------------------|--|--|--| | AE | Atlantic City, NJ | | | | | DPL | Dover, DE | | | | | ВС | Baltimore, MD | | | | | PEP | Washington, DC | | | | | DOM | Richmond VA | | | | | DOM | Mount Storm, WV | | | | AEP/COMED/DAY/DEOK/EKPC | Zone | Reference City | Zone | Reference City | |-------|----------------|-------|----------------| | AEPAB | Abingdon VA | COMED | Chicago, IL | | AEPCH | Charleston, WV | DAY | Dayton, OH | | AEPCL | Columbus, OH | DEOK | Cincinnati, OH | | AEPFW | Fort Wayne, IN | EKPC | Winchester, KY | | AEPRN | Roanoke, VA | OVEC | Piketon, OH | APS/ATSI/DUQ | | | r 3/Ar 31/DOQ | |-------|--|-------------------| | Zone | | Reference City | | APSNE | | State College, PA | | APSNW | | Wheeling, WV | | APSSE | | Cumberland, MD | | APSSW | | Morgantown, WV | | FETOL | | Toledo, OH | | FESPR | | Springfield, OH | | FEAKR | | Akron, OH | | DUQ | | Pittsburgh, PA | | | | | ## **Distribution Factors** ### **Introduction to Distribution Factors** #### Definition - The percentage of flow currently on a line that will transfer to another line as a result of the loss of the first line - Characteristics of Distribution Factors - Determined by line impedances - Computer generated - Expressed as a decimal number of 1.0 or less - Distribution factor for a line for the loss of itself is -1.0 if line flow is positive ### **Introduction to Distribution Factors** - Characteristics of Distribution Factors (cont.) - Can be a positive or negative factor - Sum of all distribution factors in a closed system is zero • Formula: New flow on line = Previous flow + [(Dfax) (Flow on outaged facility)] ### **Example Simple Calculations** ### **Example Simple Calculations** ### **Applications of Distribution Factors** #### Line Outages - Use distribution factors to estimate how power will flow and predict any flow problems which may result from a line outage - Generally performed by computer tool #### Flow Analysis Used to predict the results of losing a specific piece of equipment (Contingency) analysis) ### **Distribution Factor Exercises** | Distribution Factors for Loss of: | | | | | | | | |-----------------------------------|-----------------------------|-------|-------|-------|--|--|--| | | Line B Line C Line D Line E | | | | | | | | On B | -1.0 | 0.625 | 0.625 | 0.556 | | | | | On C | 0.4 | -1.0 | 0.25 | 0.222 | | | | | On D | 0.4 | 0.25 | -1.0 | 0.222 | | | | | On E | 0.2 | 0.125 | 0.125 | -1.0 | | | | ### **Distribution Factor Exercises** 1) Calculate the line flows for each line following the loss of line B, if the initial flows were: ### **Distribution Factor Exercises** 2) Calculate the line flows for each line following the loss of line D, if the initial flows were: - Similar to Distribution Factors - Decimal Fraction - Used to analyze the effect of generation shifts on MW flow - Does <u>NOT</u> add up to 0 - Definition - Change in generation MW output that will appear on a line or facility - Used to predict the effect of generation changes on transmission line flow • Formula New flow on line = Previous flow + [(Gen Shift Factor)(Amount of MW Shift)] - Line 3 Flow = 500 MW - Increase Gen A by 100 MW - What is resultant flow on Line 3? New Flow = 500 MW + (.12)(+100MW) = 512 MW | | Line 1
(A-B) | Line 2
(A-B) | Line 3
(A-C) | Line 4
(C-B) | Line 5
(B-D) | |-------|-----------------|-----------------|-----------------|-----------------|-----------------| | Gen A | 0.30 | 0.30 | 0.12 | 0.12 | 0.30 | | Gen B | -0.20 | -0.20 | -0.06 | -0.06 | 0.40 | | Gen C | -0.08 | -0.08 | -0.60 | 0.60 | 15 | | Gen D | -0.12 | -0.12 | -0.03 | -0.03 | -0.50 | - Line 3 Flow = 512 MW - Now, decrease Gen C by 100 MW - What is resultant flow on Line 3? New Flow = 512 MW + (-0.6)(-100MW) = 572 MW | | Line 1
(A-B) | Line 2
(A-B) | Line 3
(A-C) | Line 4
(C-B) | Line 5
(B-D) | |-------|-----------------|-----------------|-----------------|-----------------|-----------------| | Gen A | 0.30 | 0.30 | 0.12 | 0.12 | 0.30 | | Gen B | -0.20 | -0.20 | -0.06 | -0.06 | 0.40 | | Gen C | -0.08 | -0.08 | -0.60 | 0.60 | 15 |
 Gen D | -0.12 | -0.12 | -0.03 | -0.03 | -0.50 | | | Line 1 (A-B) | Line 2 (A-B) | Line 3 (A-C) | Line 4 (C-B) | Line 5 (B-D) | |-------|--------------|--------------|--------------|--------------|--------------| | Gen A | 0.30 | 0.30 | 0.12 | 0.12 | 0.30 | | Gen B | -0.20 | -0.20 | -0.06 | -0.06 | 0.40 | | Gen C | -0.08 | -08 | -0.60 | 0.60 | 0.15 | | Gen D | -0.12 | -0.12 | -0.03 | -0.03 | -0.50 | #### **Generation Shift Factors Exercises** | | Line 1 (A-B) | Line 2 (A-B) | Line 3 (A-C) | Line 4 (C-B) | Line 5 (B-D) | |-------|--------------|--------------|--------------|--------------|--------------| | Gen A | 0.30 | 0.30 | 0.12 | 0.12 | 0.30 | | Gen B | -0.20 | -0.20 | -0.06 | -0.06 | 0.40 | | Gen C | -0.08 | -08 | -0.60 | 0.60 | 0.15 | | Gen D | -0.12 | -0.12 | -0.03 | -0.03 | -0.50 | 1) The flow on Line 1 (A-B) is 850 MW. Generator A output is increased by 100 MW. What is the new flow on Line 1 (A-B)? 2) Now Generator B decreases output by 100 MW. What is the new flow on Line 1 (A-B)? ### \$/MW Effect Adjustment of Shift Factors due to Economics #### Definition - \$/MW Effect = (Current Dispatch Rate Unit Bid) / Unit GeneratorShift Factor - Unit with lowest \$/MW effect is redispatched when system is constrained - Other unit operating constraints taken into account (I.e. min run time, time from bus, etc) - In an emergency, economics takes the "back seat" to reliability - Thermal Limit/Rating - A boundary on the current carrying capability of equipment to prevent operation at <u>excessive temperatures</u> - A thermal restriction is placed on every piece of equipment that carries current - Voltage limit - Maintain system reliability - High voltage limit protects equipment from damage - Low voltage limit protects system from voltage instability and equipment damage - Stability Limits - Stability is related to the angular separation between points in the system - Prevents electrical separation of a generating unit or a portion of the RTO - Typical angular separation of the voltages for a high voltage transmission is small, ranging from 5° to 15° - When a system is angle unstable, angle differences grow to larger values - For example, angle differences may exceed 90° - System operators lose control of both MW and MVAR flows in an angle unstable system - System Operating Limit (SOL) - The value (such as MW, MVAR, Amperes, Frequency or Volts) that satisfies the most limiting operating criteria for a specified system configuration to ensure operation within acceptable reliability criteria - Based upon certain operating criteria. These include, but are not limited to: - Facility Ratings - Transient Stability Ratings - Voltage Stability Ratings - System Voltage Limits ## **Types of Limits** - Interconnection Reliability Operating Limit (IROL) - A System Operating Limit that, if violated, could lead to instability, uncontrolled separation, or cascading outages that adversely impact the reliability of the Bulk Electric System - Thermal Operating Criteria - Actual Flow less than Normal Rating - Contingency Flow less than Long-Term Emergency Rating - Operators must be aware when line flows are approaching a limit on both an actual and contingency basis - Approaching a system limit - Analyze situation - Develop game plan - Implement plan - System Operating Limit in PJM - All BES facilities and those sub- BES facilities identified as "Reliability and Markets" facilities that are not considered IROL facilities are considered System Operating Limits (SOL) - An SOL violation is defined as a non-converged contingency or actual thermal overload violating a limit consistent with the facilities rating duration (i.e. Normal limit = 24 hours, LTE limit = 4 hours) - Interconnection Reliability Operating Limit in PJM if exceeded, could expose a widespread area of the Bulk Electric System to instability, uncontrolled separation(s) or cascading outages - PJM classifies a facility as an IROL facility on the PJM system if wide-area voltage violations occur at transfer levels that are near the Load Dump thermal limit - An IROL violation is defined as either flows exceeding the last convergent case transfer limit for 30 minutes or post-contingency simulated flows exceeding the facility load dump limit for 30 minutes - Interconnection Reliability Operating Limit T_V - The maximum time that an IROL can be violated before the risk to the Interconnection or other Reliability Coordinator Area (s) becomes greater than acceptable - Each IROLs T_v shall be less than or equal to 30 minutes - PJM uses 30 minutes as its T_V for all its IROLs - Thermal Operating Criteria - Control all constraints (actual and contingency) within 30 minutes 100% and within 15 minutes 80% of the time - At times, operator may be faced with multiple problems at the same time and have to prioritize the order in which to address them - Control Prioritization - First: Non-Converged Contingency - Could be worst problem (voltage collapse) or due to bad data - Operator needs to determine cause of non-convergence and take action if problem is real - Second: IROL violations - Contingency could result in a system collapse - Must be controlled within 30 minutes, 100% of time - If not, it must be reported to NERC - Control Prioritization - Third: Reactive Transfer Interfaces - Many of these are IROL facilities - Fourth: Actual Violations - Actual flows > Normal limit - Prioritize Actual violations based on amount that rating is exceeded and potential system impact - Fifth: Contingency Violations - Smaller chance of contingency actually occurring - If contingency occurs, it becomes actual | Thermal Limit Exceeded | Corrective Actions | Time to correct with Load Shed (Note 1) | | | |---|---|--|------------------------|----------------| | Normal Rating (Actual flow greater than | Non-cost actions, off-cost actions, emergency procedures except Load | Within 15 minutes, load shed is not used | | | | Normal Rating but less than
Emergency Rating) | Shed Operating Instruction (See M-13, Emerg. Proc.) | | Non-C | Legend
Cost | | Emergency Rating (Actual flow greater than Emergency Rating but less than Load Dump Rating) | All of the above including Load Shed
Operating Instruction to control flow
below Emergency Rating | Within 15 minutes
(Note 2) | Off-Cost Load Shedding | | | Load Dump Rating (Actual flow greater than Load Dump Rating) | All of the above including Load Shed
Operating Instruction to control flow
below Emergency Rating | Within 5 minutes
(Note 1)
(Note 3) | | | #### Note: 3: A load shed directive will be issued in an amount sufficient to get below Emergency rating. ^{1:} For unplanned load shed events, TO must initiate load dump action within 5 minutes after PJM issues a Load Shed Directive. TO must not exceed the time based duration of any Emergency rating/Load Dump rating. ^{2:} TOs have the option of providing STE limits that are at least 30 minutes in duration. The STE rating allows the time before load shed to be extended provided the actual flow does not exceed the STE rating. If the actual flow is above the LTE but below STE, load must be shed within the times indicated in Attachment F for the facility, if other corrective actions were not successful. #### **If Actual Flow < Normal Rating:** - No corrective actions are required - No limits are violated # Actual Flow (430 MVA) is < LTE but > Normal Rating: - Corrective Actions: - Non-cost - Off-cost options - No load shed would be performed - Goal is to correct problem in: - 15 minutes - May not be possible since load shed is not a controlling action 48 #### Actual Flow (520 MVA) is > LTE but < LD: - Corrective Actions: - Non-cost - Off-cost - Load shed options - Load shed performed to return Actual flow below: - LTE rating: Within 15 minutes - Relief needed? - 70 MVA - May require more than 70 MVA of load shed based on Dfax #### Actual Flow (550 MVA) > LD: - Corrective Actions include: - Non-cost - Off-cost - Load shed - Load shed performed to return Actual flow below: - LD rating: Within 5 minutes - LTE rating: Within time remaining - Times are not cumulative! - Relief needed: - 100 MVA - This may require more than 100 MVA of load shed based on Dfax # Normal, Long Term, Short Term and Load Dump Example #### **If Actual Flow < Normal Rating:** - No corrective actions are required - No limits are violated Normal Rating #### **Actual Flow (425 MVA) is < LTE but > Normal Rating:** - Corrective Actions include: - Non-cost - Off-cost options - No load shed would be performed - Goal is to correct problem in: - 15 minutes - May not be possible since load shed is not a controlling action #### Actual Flow (475 MVA) is > LTE but < STE: - Corrective Actions include: - Non-cost - Off-cost - Load shed - Load shed would be performed to return Actual flow: - LTE rating - Within the rating duration of the STE - In this example; within 60 minutes - Relief needed: - 25 MVA - This may require more than 25 MVA of load shed based on distribution factor effect #### Actual Flow (530 MVA) is > STE but < LD: - Corrective Actions include: - Non-cost - Off-cost - Load shed - Load shed performed to return Actual flow below: - STE rating: Within 15 minutes - LTE rating: Within the remaining time - Times are not cumulative! - Relief needed: - 80 MVA - This may require more than 80 MVA of load shed based on Dfax #### Actual Flow (600 MVA) > LD: - Corrective Actions include: - Non-cost - Off-cost - Load shed - Load shed performed to return Actual flow below: - LD rating: Within 5 minutes - STE rating: Within 15 minutes, or time remaining - LTE rating: Within 60 minutes, or time remaining - Times are not cumulative! - Relief needed: - 150 MVA - This may require more than 150 MVA of load shed
based on Dfax | Thermal Limit Exceeded | If Post Contingency simulated loading exceeds limit | Time to correct | | | |--|---|-----------------|--|--| | Normal | Trend – continue to monitor. Take non-
cost actions to prevent contingency from
exceeding emergency limit | N/A | | | | Emergency | Use all effective actions and emergency procedures except load dump | 30 minutes | | | | Load Dump All of the above however, shed load only if necessary to avoid post-contingency cascading | | 30 minutes | | | Legend Non-Cost Off-Cost Load Shedding Exhibit 2: PJM Post-Contingency Simulated Thermal Operating Policy **Note:** System readjustment should take place within 30 minutes. PCLLRW should be implemented as post-contingency violations approach 60 minutes in duration. However, PCLLRW can be issued sooner at the request of the Transmission Owner of if the PJM Dispatcher anticipates controlling actions cannot be realized within 60 minutes due to longer generator start-up + notification times ## **Consequences of Violating Thermal Limits** #### **Consequences of Violating Thermal Limits** #### • Lines - Conductor Sag - Could lead to loss of the facility - Flows will be redistributed on other lines. - Rule of Thumb For the loss of a line flowing towards station, the other lines flowing toward station will increase while the lines flowing out of station will decrease - Rule of Thumb For the loss of a line flowing out of a station, the other lines flowing out of station will increase while the lines flowing toward a station will decrease - Increased flows could lead to more overloads and if severe enough, possible cascading trips, system separation and blackout #### **Consequences of Violating Thermal Limits** #### Transformers Overheating may cause damage to the winding insulation or thermal damage to the oil #### Generators - Rotor and stator winding insulation damage - Generator could trip off line to protect it from damage - Results in possible voltage drop and MW and MVAR in-flow from the rest of the system - Affects on system power flows - Rule of Thumb For a loss of generation, flows toward station will increase and flows out of station will decrease #### **Controlling Thermal Violations** #### • Non-cost Responses to Thermal Violations - Restore tripped equipment quickly if possible - Generally cables and transformers are not reclosed following a tripping - Remove faulted equipment from system - Isolate faulted equipment through switching - Activate Special Purpose Relays - Approved switching procedures - Adjust Phase Angle Regulators (PARS) #### **Controlling Thermal Violations** - Off-cost Responses to Thermal Violations - Curtail Non-firm transactions NOT willing to pay congestion - Re-dispatch generation - Cancel maintenance - Request return of outage equipment - NERC Transmission Loading Relief (TLR) - Initiate ALL Emergency Procedures <u>EXCEPT</u> Load Shed - Including Manual Load Dump Warning and Post Contingency Local Load Relief Warning #### **Controlling Thermal Violations** - Load Shedding Response to Thermal Violations - Determine if load shedding is required - All other control actions have been exhausted - Over emergency or load dump rating on an actual basis - Over load dump rating on contingency basis <u>if</u> analysis indicates potential for cascading thermal overloads - Determine amount of load shed necessary - Determine location of load shed - Local vs. System-wide - Shed load proportional among Native Load customers, Network customers and firm point-point service # Remedial Action Schemes (RAS) #### Disclaimer - This presentation explains the types of RAS that can be found on transmission and distribution systems - Examples of RAS will be provided for schemes used in the PJM RTO - Each individual scheme on the PJM system is not covered in this presentation - Further information regarding specific RAS in PJM can be located in Section 5 of PJM Manual 3 #### Introduction - Basic power system protection is designed to protect system equipment by isolating faulted equipment - Examples include: generators, lines, transformers and busses #### **Problem Statement** - The size and complexity of the power grid makes the bulk electric system vulnerable to: - Congestion - Over/underfrequency - Over/undervoltage - Power system instability www.gedigitalenergy.com (2013) #### **Problem Statement** - Unaddressed system vulnerabilities could result in: - Multiple contingencies - Equipment damage - Power system collapse ## Solution: Use Remedial Action Schemes (RAS) - Remedial Action Scheme (RAS) is designed to detect abnormal system conditions and initiate predetermined actions to maintain the reliability of the Bulk Electric System (BES) - Actions include: - Changes in demand - Changes in generation output - Changes in system configuration - Goals of an RAS: - Maintain system stability - Maintain acceptable system voltages - Maintain all facilities within acceptable thermal limits #### Criteria #### Dependability: Certainty that the scheme operates when required to avoid a collapse #### • Security: Certainty that the scheme does not operate when not required #### • Selectivity: Ability to select the correct and minimum amount of action #### **Robustness:** Ability of the scheme to provide dependability, security, and selectivity over the full range of dynamic and steady state operating conditions #### **NERC Standards** As the Reliability Coordinator, Transmission Operator and Balancing Authority, PJM is responsible to monitor the status of all schemes in the RTO #### PRC-001.1(ii) R6 R6. Each Transmission Operator and Balancing Authority shall monitor the status of each Special Protection System in their area, and shall notify affected Transmission Operators and Balancing Authorities of each change in status. #### IRO-002-4 R5 R5. Each Reliability Coordinator shall monitor Facilities, the status of Remedial Action Schemes, and non-BES facilities identified as necessary by the Reliability Coordinator, within its Reliability Coordinator Area and neighboring Reliability Coordinator Areas to identify any System Operating Limit exceedances and to determine any Interconnection Reliability Operating Limit exceedances within its Reliability Coordinator Area. [Violation Risk Factor: High] [Time Horizon: Real-Time Operations] ## **RAS Requirements** #### Relays #### **Communication Network** #### **Scheme Logic** ### **PJM RAS Review Process** - PJM Manual 3: Section 1.7 - PJM receives proposal for RAS - Must meet NERC RAS definition - PJM and TO review scheme and system impacts - PJM provides recommendation and identifies if scheme is needed for reliability purposes including operational performance - PJM posts scheme information and document scheme in M-03 - Owner obtains RRO approval and discusses at various committee meetings ## **PJM RAS Identification** • PJM will always use the following format to identify RAS: ## **RAS Questions for Activation** - Does the scheme require manual activation (communication protocol)? - What are the conditions that will activate the scheme? - What conditions make the scheme nonfunctional? - What procedures are in place should the RAS become unavailable? - Is my contingency analysis modeled properly based on the relay scheme logic? - Is the bulk electric system in a reliable posture following the activation of the RAS? # **Types of RAS** # **Types of RAS** - Remedial Action Scheme is designed to perform several functions. These include: - Trip or transfer trip a facility - Initiate generator load rejection schemes # **Trip Scheme** Will initiate breaker operation to mitigate overload ## **Transfer Trip Scheme** Will coordinate breaker operations to initiate remote tripping based on a predetermined set of conditions ## **Generation Load Rejection** - Used to maintain system stability following loss of load events - Full Load Rejection - Most PJM generator runback schemes are Full Load Rejection # **Generation Load Rejection** - Full Load Rejection - Main generator breakers trip - Loss of synchronization and full load - Steam generators runback from full load to no-load # **Generation Load Rejection** #### PJM RAS Actions - 1. PJM will contact the TO to verify EMS results and direct the RAS to be Enabled - 2. PJM will modify the contingency definition to simulate the N-1 condition in the EMS with the RAS activated - 3. PJM will log the activation/deactivation of the RAS scheme that is a change from its "Normal" status - 4. PJM will control all actual facility loadings below the Normal ratings and all contingency loadings below the Emergency rating 6457 Manual 3: Transmission Operations Section 5: Index and Operating Procedures for PJM RTO Operation committee review unless required for reliability, operational performance, or to restore the system to the state existing prior to a significant transmission facility event, in which case the scheme will be implemented as soon as practicable. PJM will conduct an annual review of automatic sectionalizing schemes to ensure that the results of the initial qualifying analysis remain in effect. A list of accepted Automatic Sectionalizing Schemes is located in Attachment E. #### Automatic Special Protection Scheme (SPS) Operating Criteria Under normal operating conditions, PJM's EMS will perform an N-1 contingency analysis for the loss of each Bulk Electric System line and transformer within the PJM RTO. PJM will then control as indicated in Manual M-03 Section 3: Thermal Operating Criteria. When PJM's EMS indicates that a simulated N-1 contingency will result in an overload on a facility that can be mitigated by a Special Protection Scheme (SPS) that has been documented in PJM Manual M-03 Section 5: "Index and Operating Procedures
for PJM RTO Operation", the following actions should be taken: #### PJM Actions: - 1.) PJM will contact the Transmission Owner based on EMS results and direct the SPS to be changed from its 'Normal Status' (enabled/disabled), PJM will also verify that the SPS is operational and that its status can be changed. - Once the Transmission Owner has changed the SPS status, PJM will modify the contingency definition(s) to simulate the N-1 condition and the subsequent activation of the associated SPS within the PJM EMS System. - PJM will log activation/deactivation for an SPS that is a change from its 'Normal Status' - 4.) PJM will control all actual facility loadings below the normal ratings and all subsequent contingency loadings below the emergency limits as indicated in PJM Manual M-03, Section 3: Thermal Operating Criteria. #### TO Actions: Upon PJM's direction, for any SPS involving a transmission line, the TO will change the SPS from its 'Normal Status' (enable/disable) The TO will not place the SPS back in its 'Normal Status' until PJM has directed to do so. Upon PJM' direction, for any SPS involving a generating unit, the GO will change the SPS from its 'Normal Status' (enable/disable) The GO will not place the SPS back in its 'Normal Status' until PJM has directed to do so. Note: PJM does not receive telemetered status of all SPS schemes (with the exception of Bath County and a few others). Unless a change in status is directed by PJM, the PJM TO and GO notify PJM of any change in status from 'Normal Status' (enabled/disabled). PJM logs all such changes and modifies contingency definitions within the PJM EMS to reflect such changes. PJM © 2013 Revision 43 Effective Date: 06/01/2013 ## PJM TO/GO RAS Actions - 1. TO/GO will change the RAS status upon PJM's direction - 2. TO/GO will not change the RAS status back to "Normal" unless directed to do so by PJM - 3. TO/GO must report any condition that would prevent the use of the RAS or cause the RAS to become inoperable Manual 3: Transmission Operations Section 5: Index and Operating Procedures for PJM RTO Operation committee review unless required for reliability, operational performance, or to restore the system to the state existing prior to a significant transmission facility event, in which case the scheme will be implemented as soon as practicable. PJM will conduct an annual review of automatic sectionalizing schemes to ensure that the results of the initial qualifying analysis remain in effect. A list of accepted Automatic Sectionalizing Schemes is located in Attachment E. #### Automatic Special Protection Scheme (SPS) Operating Criteria Under normal operating conditions, PJM's EMS will perform an N-1 contingency analysis for the loss of each Bulk Electric System line and transformer within the PJM RTO. PJM will then control as indicated in Manual M-03 Section 3: Thermal Operating Criteria. When PJM's EMS indicates that a simulated N-1 contingency will result in an overload on a facility that can be mitigated by a Special Protection Scheme (SPS) that has been documented in PJM Manual M-03 Section 5: "Index and Operating Procedures for PJM RTO Operation"*, the following actions should be taken: #### PJM Actions: - PJM will contact the Transmission Owner based on EMS results and direct the SPS to be changed from its 'Normal Status' (enabled/disabled). PJM will also verify that the SPS is operational and that its status can be changed. - Once the Transmission Owner has changed the SPS status, PJM will modify the contingency definition(s) to simulate the N-1 condition and the subsequent activation of the associated SPS within the PJM EMS System. - PJM will log activation/deactivation for an SPS that is a change from its 'Normal Status' - PJM will control all actual facility loadings below the normal ratings and all subsequent contingency loadings below the emergency limits as indicated in PJM Manual M-03. Section 3: Thermal Operating Criteria. #### TO Actions: Upon PJM's direction, for any SPS involving a transmission line, the TO will change the SPS from its 'Normal Status' (enable/disable) The TO will not place the SPS back in its 'Normal Status' until PJM has directed to do so. #### GO Actions: Upon PJM' direction, for any SPS involving a generating unit, the GO will change the SPS from its 'Normal Status' (enable/disable) The GO will not place the SPS back in its 'Normal Status' until PJM has directed to do so. Note: PJM does not receive telemetered status of all SPS schemes (with the exception of Bath County and a few others). Unless a change in status is directed by PJM, the PJM TO and GO notify PJM of any change in status from 'Normal Status' (enabled/disabled). PJM logs all such changes and modifies contingency definitions within the PJM EMS to reflect such changes. PJM © 2013 Revision 43. Effective Date: 06/01/2013 #### Scenario #1: On a 77° summer day there are 2546 MW and 1823 MVAR flowing on the Elmer-Wenatchee 500 kV line. Is the flow exceeding any actual thermal limit? If so which one, how much relief is needed, and how long do you have to correct and what actions are used? #### Scenario #2: On a 41° winter evening there are 582 MW and 175 MVAR flowing on the Ellensburg-Wenatchee 230 kV line. Is the flow exceeding any actual thermal limit? If so which one, how much relief is needed, and how long do you have to correct and what actions are used? #### Scenario #3: On a 50° autumn morning there are 3218 MW and 1891 MVAR flowing on the Everett-Wenatchee 500 kV line. Is the flow exceeding any actual thermal limit? If so which one, how much relief is needed, and how long do you have to correct and what actions are used? #### Scenario #4: On that same 77° summer day your security analysis program shows that for the loss of the Elmer-Wenatchee 500 kV line the flow on Ellensburg-Wenatchee 230 kV line would go up to 701 MVA Is the flow exceeding any post-contingency simulated thermal limit? If so which one, how much relief is needed, and how long do you have to correct and what actions are used? #### Scenario #5: On a 41° winter evening your security analysis program shows that for the loss of the Ellensburg-Wenatchee 230 kV line the flow on Elmer-Wenatchee 500 kV line would go up to 3133 MVA. Is the flow exceeding any post-contingency simulated thermal limit? If so which one, how much relief is needed, and how long do you have to correct and what actions are used? #### Scenario #6: On a 50° autumn morning your security analysis program shows that for the loss of the Ellensburg-Wenatchee 500 kV line the flow on Everett-Wenatchee 500 kV line would go up to 3333 MVA. Is the flow exceeding any post-contingency simulated thermal limit? If so which one, how much relief is needed, and how long do you have to correct and what actions are used? # **IROLs in PJM** - PJM Manual 37 outlines the IROLs within the PJM footprint, and how they are monitored - IROL analysis is performed in: - long-term and short-term planning studies - day-ahead studies - real time - Studies include a long list of possible contingencies - studied at estimated peak loads - include facilities identified as requiring special attention - Facilities contributing to the 2003 Blackout - The RFC (ECAR) list of critical facilities - MAAC assessment limits - Others identified by operating experience - Flows are increased across a given piece of equipment or interface - Looking for any resulting voltage and thermal violations - PJM EMS increases load in Eastern PJM (sink) with an increase in Western Generation (MISO) until a voltage violation (or collapse) is identified - Thermal limit violations alone allow PJM (and company) Dispatchers time to respond without jeopardizing system reliability, and are NOT IROLs - PJM classifies a facility as an IROL facility: - If wide-area voltage violations occur at transfer levels that are near the Load Dump thermal limit - Plus case-by-case exceptions as identified in the studies - In most cases, the IROLs are a limit on MW flows to prevent a post-contingency voltage violation or collapse... - Determination of Reactive Transfer Limits - Limits are calculated every 2 5 minutes on PJM's EMS - Each transfer interface has its own set of contingencies and monitored buses # What Are the IROLs in the PJM Footprint? - The Reactive Transfer Limit for an interface is determined as the more restrictive of: - The minimum pre-contingency transfer interface flow where a postcontingency voltage drop violation (5%) or post-contingency low voltage violation first occurs #### OR - The minimum pre-contingency transfer interface flow with a converged power flow solution minus the user specified MW "back-off" value - Generally 50 300 MW ## What Are the IROLs in the PJM Footprint? #### **Pre-Contingency Line Flow** # What Are the IROLs in the PJM Footprint? #### **Pre-Contingency Line Flow** | Transfer Interface | Interface Definition (From Bus - To Bus) | |----------------------|---| | Eastern
(Eastern) | 5059 Breinigsville – Alburtis #1 500 kV line 5058 Breinigsville – Alburtis #2 500 kV line 5009 Juniata – Alburtis 500 kV line 5066 Lauschtown – Hosensack 500 kV line 5010 Peach Bottom – Limerick 500 kV line 5025 Rock Springs – Keeney 500 kV line 5063 Lackawanna - Hopatcong 500 kV line | | Central
(Central) | 5004 Keystone – Juniata 500 kV line 5005 Conemaugh – Juniata 500 kV line 5012 Conastone – Peach Bottom 500 kV line | | 5004/5005
(5004/5005) | 5004 Keystone – Juniata 500 kV line 5005
Conemaugh – Juniata 500 kV line | |------------------------------------|--| | Western
(Western) | 5004 Keystone – Juniata 500 kV line 5005 Conemaugh – Juniata 500 kV line 5068 Vinco – Hunterstown 500 kV line 5055 / 522 Doubs – Brighton 500 kV line | | Bedington – Black Oak
(Bed-Bla) | 544 Black Oak – Bedington 500 kV line | | AP South (AP South) | 583 Bismark – Doubs 500 kV line 540 Greenland Gap – Meadow Brook 500 kV line 550 Mt. Storm – Valley 500 kV line 529 Mt. Storm – Meadow Brook 500 kV line | |-----------------------------|---| | AEP - Dominion
(AEP-DOM) | Kanawha River – Matt Funk 345 kV line Wyoming – Jacksons Ferry 765 kV line Baker – Broadford 765 kV line | | Cleveland
(CLVLND) | Hanna – Chamberlin 345 kV line Hanna – Juniper 345 kV line Star – Juniper 345 kV line Star – North Medina 345 kV line Erie West – Ashtabula 345 kV line Mansfield – Glenwillow 345 kV line Monroe – Lallendorf 345 kV line | |-----------------------|--| | | Monroe – Lallendorf 345 kV line | | CE-East
(CE-EAST) | Dumont - Wilton Center 765 kV line Olive - University Park North 345 kV line St. Johns - Crete 345 kV line Sheffield - Burnham 345 kV line Sheffield - Stateline 345 kV line Munster - Burnham 345 kV line | |----------------------|---| |----------------------|---| | BC/PEPCO | 5055/522 Doubs - Brighton 500 kV line | |------------|---| | (BC/PEPCO) | 5013 Hunterstown - Conastone 500 kV line | | | 5012 Peach Bottom - Conastone 500 kV line | | | 560/5070 Possum Point – Burches Hill 500 kV line | | | Aqueduct - Dickerson 230 kV line | | | Doubs – Dickerson 23102 230 kV line | | | Cooper – Graceton 230 kV line | | | Edwards Ferry – Dickerson 230 kV line | | | Otter Creek – Conastone 230 kV line | | | Safe Harbor - Graceton 230 kV line | | | Face Rock – Five Forks #1 115 kV line | | | Face Rock – Five Forks #2 115 kV line | | | | # **Current IROL facilities as defined within the PJM footprint:** | Transfer Limit/Thermal Rating | Reportable IROL Violation | |--|--| | Eastern Reactive Transfer Interface | Flow exceeds Last Convergent Case Limit for 30 minutes (T _v) | | Central Reactive Transfer Interface | Flow exceeds Last Convergent Case Limit for 30 minutes (T _v) | | 5004/5005 Reactive Transfer Interface | Flow exceeds Last Convergent Case Limit for 30 minutes (T _v) | | Western Reactive Transfer Interface | Flow exceeds Last Convergent Case Limit for 30 minutes (T _v) | | AP South Reactive Transfer Interface | Flow exceeds Last Convergent Case Limit for 30 minutes (T _v) | | Bedington – Black Oak Reactive Transfer
Interface | Flow exceeds Last Convergent Case Limit for 30 minutes (T _v) | | AEP-DOM Reactive Transfer Limit | Flow exceeds Last Convergent Case Limit for 30 Minutes (T _v) | | Cleveland (CLVLND) Reactive Transfer
Interface | Flow exceeds Last Convergent Case Limit for 30 Minutes (T _v) | | CE - East Reactive Transfer Interface | Flow exceeds Last Convergent Case Limit for 30 Minutes (T _v) | ### **IROL Load Shed Procedure** - Purpose of the IROL Manual Load Dump: - Provide loading relief on IROL facilities as a last step - Prevent exceeding an IROL Limit for 30 minutes (IROL Violation) - Quickly act to mitigate IROL facilities in accordance with operating procedures - PJM Transmission Operations Manual (M03) - Section 2: Thermal Operating Guidelines - Section 3: Voltage & Stability Operating Guidelines - PJM Emergency Operations Manual (M13) - Section 5: Transmission Security Emergencies ### **IROL Load Shed Procedure** - IROL Manual Load Dump Warning - Issued via the PJM All-Call System when the IROL Limit has been exceeded for 5 minutes or longer - The purpose is to PREPARE Transmission dispatchers/LSEs to curtail load within 5 minutes to return flows below the IROL Limit - IROL Manual Load Dump Warning - Transmission Owner Operators/LSEs - Once an IROL Manual Load Dump Warning has been implemented: - Promptly review IROL Manual Load Dump Allocation Table (Attachment N, M-13) in preparation of Manual Load Dump - To determine your required amount of Load Shed, determine your company multiplier for that IROL - Multiply the amount of relief requested by PJM by your multiplier to determine your company's load shed amount - Validate Load Dump Plan, Identifying critical or priority load(s) - **PREPARE** to shed load - IROL Manual Load Dump Action - Issue via the PJM All-Call System when the IROL Limit has been exceeded for up to 25 minutes. - PJM dispatch: - Notifies PJM management - Public information personnel, and members - Other Control Areas through the RCIS - Notifies DOE, FEMA, and NERC - Notifies FERC via the FERC Division of Reliability's electronic pager system - IROL Manual Load Dump Action - Transmission Owner Operators/LSEs - Promptly (within 5 minutes) shed an amount of load equal to or in excess of the amount requested by PJM dispatcher in accordance with Attachment N, but consider/recognize priority/critical load - A Grey Box on Attachment N indicates your company has no responsibility to shed load for that IROL - Notify governmental agencies, as applicable - Maintain the requested amount of load relief until the load dump order is cancelled ### **Attachment N: IROL Load Dump Tables** | $\overline{}$ | | | _ | | | | _ | | | |---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | IROL | East | Central | 5004/05 | West | AP South | Bed-BO | AEP/DOM | | CE-EAST | | TO Zone | Multiplier | DPL | 0.21 | 0.16 | 0.40 | 0.18 | | | | | | | DPL-Dover | 0.01 | 0.01 | 0.02 | 0.01 | | | | | | | DPL-DEMEC | 0.02 | 0.01 | 0.03 | 0.02 | | | | | | | DPL-Easton | 0.00 | 0.00 | 0.01 | 0.00 | | | | | | | DPL-ODEC | 0.05 | 0.04 | 0.10 | 0.05 | | | | | | | AE | 0.14 | 0.11 | 0.27 | 0.12 | | | | | | | AE-Vineland | 0.01 | 0.01 | 0.02 | 0.01 | | | | | | | PS | 0.59 | 0.46 | 1.10 | 0.49 | | | | | | | RECO | 0.02 | 0.02 | 0.04 | 0.02 | | | | | | | PE | 0.60 | 0.47 | 1.12 | 0.50 | | | | | | | FE East-JC | 0.32 | 0.25 | 0.60 | 0.27 | | | | | | | PL | | 0.51 | 1.23 | 0.55 | | | | | | | UGI | | 0.01 | 0.03 | 0.01 | | | | | | | FE East-ME | | 0.18 | 0.43 | 0.19 | | | | | | | FE East-PN | | | | | | | | | | | BC | | | | 0.44 | 0.93 | 3.98 | 1.48 | | | | PEP | | | | 0.35 | 0.75 | 3.20 | 1.19 | | | | PEP-SMECO | | | | 0.05 | 0.10 | 0.44 | 0.17 | | | | FE South | | | | | | | | | | | Dom | | | | | 2.91 | 4.10 | 4.62 | | | | Dom-NCEME | | | | | 0.26 | 1.11 | 0.41 | | | | Dom-ODEC | | | | | 0.05 | 0.19 | 0.07 | | | | DLCO | | | | | | | | | | | AEP | | | | | | | 1.00 | | | | Dayton | | | | | | | | | | | FE West | | | | | | | | 0.93 | | | CPP | | | | | | | | 0.07 | | | ComEd | | | | | | | | | 0.998 | | DEOK | | | | | | | | | | | EKPC | | | | | | | | | | | Rochelle | | | | | 112 | | | | 0.002 | - Example: IROL Load Shed Request - PJM announces an IROL Load Shed Warning for 350 MW of Relief on the Western Transfer IROL - Your company is Public Service (PS) - You consult Attachment N and determine that your company Multiplier for the Western Transfer IROL is 0.49 ### **Attachment N: IROL Load Dump Tables** | IROL | East | Central | 5004/05 | West | AP South | Bed-BO | AEP/DOM | CLVLND | CE-EAST | |-------------|------------|------------|---------|------------|------------|------------|---------|------------|---------| | TO Zone | Multiplier | Multiplier | | Multiplier | Multiplier | Multiplier | | Multiplier | | | DPL | 0.21 | 0.16 | 0.40 | 0.18 | | | | | | | DPL-Dover | 0.01 | 0.01 | 0.02 | 0.01 | | | | | | | DPL-DEMEC | 0.02 | 0.01 | 0.03 | 0.02 | | | | | | | DPL-Easton | 0.00 | 0.00 | 0.01 | 0.00 | | | | | | | DPL-ODEC | 0.05 | 0.04 | 0.10 | 0.05 | | | | | | | AE | 0.14 | 0.11 | 0.27 | 0.12 | | | | | | | AE-Vineland | 0.01 | 0.01 | 0.02 | 0.01 | | | | | | | PS | 0.59 | 0.46 | 1.10 | 0.49 | | | | | | | RECO | 0.02 | 0.02 | 0.04 | 0.02 | | | | | | | PE | 0.60 | 0.47 | 1.12 | 0.50 | | | | | | | FE East-JC | 0.32 | 0.25 | 0.60 | 0.27 | | | | | | | PL | | 0.51 | 1.23 | 0.55 | | | | | | | UGI | | 0.01 | 0.03 | 0.01 | | | | | | | FE East-ME | | 0.18 | 0.43 | 0.19 | | | | | | | FE East-PN | | | | | | | | | | | BC | | | | 0.44 | 0.93 | 3.98 | 1.48 | | | | PEP | | | | 0.35 | 0.75 | 3.20 | 1.19 | | | | PEP-SMECO | | | | 0.05 | 0.10 | 0.44 | 0.17 | | | | FE South | | | | | |
 | | | | Dom | | | | | 2.91 | 4.10 | 4.62 | | | | Dom-NCEME | | | | | 0.26 | 1.11 | 0.41 | | | | Dom-ODEC | | | | | 0.05 | 0.19 | 0.07 | | | | DLCO | | | | | | | | | | | AEP | | | | | | | 1.00 | | | | Dayton | | | | | | | | | | | FE West | | | | | | | | 0.93 | | | СРР | | | | | | | | 0.07 | | | ComEd | | | | | | | | | 0.998 | | DEOK | | | | | | | | | | | EKPC | | | | | | | | | | | Rochelle | | | | | 114 | | | | 0.002 | - Example: IROL Load Shed Request - You multiply the amount of PJM requested relief (350 MW) by your company multiplier (0.49) to get your required Loadshed amount - 350 X 0.49 = 171.5 MW - You identify where in your Zone that load will be shed - If/When PJM issues the IROL Load Shed Action, you would shed at least 171.5 MW within 5 minutes and keep that amount of load off the system until PJM gives you the OK to restore the load - Rotating load is OK so long as the minimum shed is at least 171.5 MW # Interconnection Reliability Operating Limits (IROL) Simulations - We are going to look at some Potential IROL Load shedding situations - For each case, your system will start with actual values within limits - A situation will occur causing an IROL violation - Your job will be to determine the most efficient way of getting the IROL back within real-time limits Maximum Unit output values are: Beaver - 300 MW Anchor - 200 MW Newcome - 650 MW Reese -65 MW* Thyme - 15 MW* * Reese and Thyme are wind units, and are either full on, or fully off. Their output is not adjustable Newcome is the "slack" unit. It will adjust its output to maintain the system's ACE as you adjust the output of the other units - The IROL interface Limit is 120 MW - Pie chart at the top of the display shows the percentage of the limit at which the current IROL value is operating - For these scenarios we are simply looking at real-time values, not contingency values... - To see the actual MW value currently across the interface, place the pointer above the IROL line and right click - Once the case is open: - Ensure Run Mode is selected - Left click on the "Tools" tab, then the green button directly below it to start the animation for the simulation ### • Case #1: - Once your animation is up and running, here is your situation: - The wind has died down causing the Wind unit at Reese to come offline. Take the Reese unit offline by clicking on the unit output breaker.... - Answer the questions on the Instructor Screen...... We will debrief in ~ 5 minutes - Case #1 Questions: - 1. Has taking the Reese Unit offline caused an IROL violation? - 2. If so, by how many MW are you over the IROL limit? - 3. For this scenario there are no non-cost options that are effective at controlling the violation. There are no transactions that can be cut that will help. What is your next most desirable option? - 4. What course of action do you suggest? 5. How does the action you took compare to the initial violation of the IROL? ### • Case #2: - Once your animation is up and running, here is your situation: - Both Wind units are offline, and will remain offline - The Mission-Reese 138 kV Line trips out of service. Open the line by clicking on the CB at Either terminal... - Answer the questions on the Instructor Screen...... We will debrief in ~ 5 minutes ### • Case #2 Questions: - 1. Has the line trip caused an IROL violation? - 2. If so, by how many MW are you over the IROL limit? - 3. For this scenario there are no non-cost options. There are no transactions that can be cut that will help. What is your next most desirable option? - 4. What course of action do you suggest? - 5. Is Generation adjustment sufficient to control the IROL violation? - 6. What other action(s) must be taken? #### • Case #3: - Once your animation is up and running, here is your situation: - The Anchor Unit trips offline. Take the Anchor unit offline by clicking on the unit output breaker... - Answer the questions on the Instructor Screen..... We will debrief in ~ 5 minutes. ### • Case #3 Questions: - 1. Has the unit trip caused an IROL violation? - 2. If so, by how many MW are you over the IROL limit? - 3. For this scenario there are no non-cost options that are effective at controlling the violation. There are no transactions that can be cut that will help. What is your next most desirable option? - 4. Consulting your IROL Load shed table, you find out that your multiplier for this interface is 1.2. Using the amount of MW the interface is in violation from #2 above, determine the amount of load you need to shed in the West. - 5. Shed that amount of load. Is the interface now within the IROL's? - 6. What concept from this module does this example reinforce? # Post Contingency Local Load Relief Warning (PCLLRW) ### Manual 13, Section 5.4 - Purpose: To provide advance notice to Transmission Owners (TOs) of the potential for manual load dump in their area(s) - Issued after all other means of transmission constraint control have been exhausted or until sufficient generation is on-line within limits/timelines to control the constraint - Intended to relieve localized constraints (230kV and below) - Implemented as post-contingency violations approach 60 minutes - Issued sooner at the request of the Transmission Owner or at the discretion of the PJM Dispatcher Warning to be communicated to the applicable TO and posted via the Emergency Procedures Posting Application, but not communicated via the "PJM All-Call" ### Manual 13, Section 5.4 - PJM and TO Operator actions: - Review contingency flows / limits - Discuss off-cost operations/switching solutions prior to implementation of a PCLLRW, system conditions and time permitting - Review and implement acceptable pre-contingency switching, load dispatch, and generation redispatch options in lieu of issuing a Post-Contingency Local Load Relief Warning Note: If post contingency flows exceed the Load Dump rating, PJM will direct the Transmission Owner to implement any available switching solutions, provided they do not create any additional actual overloads in exceedance of their normal rating or post-contingency overloads ### Manual 13, Section 5.4 - PJM dispatcher actions: - Commit/de-commits effective generation - Adjust hydro/pumping schedules - Curtail interchange transactions - Commit quick-start generation - Market to market re-dispatch implemented where applicable Note: As indicated in M-12, for "Reliability Only" facilities (i.e. facilities not under PJM Congestion Management) the Transmission Owners have the option to pay for generation redispatch on a precontingency basis or accept a PCLLRW. However, if a "Reliability Only" facility exceeds its Load Dump rating, PJM will manually dispatch generation to maintain flows below the Load Dump rating ### Manual 13, Section 5.4 - PJM dispatcher actions: - Determine desired flow on affected facility - Post-contingency flow < LTE rating - Issue PCLLRW - Communicate verbally to affected TO(s) - Post on Emergency Procedure Posting Application - Include area affected, desired flow, any post-contingency switching, generation reductions or load transfer options - Email load Dfax report to affected TO(s) ### Manual 13, Section 5.4 - PJM dispatcher actions: - Establish mutual awareness with appropriate TO of the need to address the postcontingency actions with minimal delay - Direct load shed should contingency occur - Cancel PCLLRW when appropriate - Post-contingency flow drops below LTE rating and is not expected to reappear in the near future - Notify TO prior to canceling PCLLRW - Cancel in Emergency Procedure application - Log ### Manual 13, Section 5.4 - Member Actions: - Update load shedding plan in PCLLRW eTool application - Monitor expected post-contingency flows and adjust load dump strategy as appropriate - Advise appropriate stations and key personnel - Staff substations as necessary if load shed can't be accomplished via SCADA - Review load dump procedures and prepare to dump load in amount requested when directed by PJM ### Manual 13, Section 5.4 - Member Actions: - Prepare to implement post-contingency switching options, manual generation trip or SCADA load transfer - Prepare to implement load shedding if above fails - Man substations if SCADA fails or is insufficient - Notify PJM if post-contingency flow drops below LTE limit and PCLLRW has not yet been cancelled # **Implementation of PCLLRW** # When to Issue a PCLLRW? Post Contingency Flow> Emergency Rating Monitored facility is at 230 kV or below Contingency is NOT a reactive transfer limit or a "multi-area transmission constraint" No effective generation re-dispatch to control facility AND AND OR AND OR — Generation re-dispatch to fix contingency will take longer than the 15-30 minute criteria All controlling actions including the following have been exhausted and contingency remains # **Posting of PCLLRWs** ### **PCLLRW Tool Access** # **TO PCLLRW Application View** ### **PCLLRW Status** <u>Unacknowledged</u> <u>Unacknowledged – TO hasn't responded to PCLLRW</u> <u>Deficient - Load Shed plan is not enough to meet the PCLLRW.</u> Valid - Load shed plan is sufficient to meet the PCLLRW <u>Deficient</u> Changing system conditions can cause a **Valid** load shed plan status to change to **Deficient** <u>Valid</u> • 5 MVA Bandwidth +/- # **TO Load Shed Plan Display** Clicking on "Unacknowledged" opens the Load Shed Plan for the specific PCLLRW TO must still identify locations and amount of planned load shed should Load Shed Directive be issued # **TO Load Shed Plan Display** # **TO Load Shed Plan Display** - The required MW amount to relieve the PCLLRW will be listed - As data is entered, the Cumulative Load Shed Relief will update - This box is highlighted red until the desired amount has been reached - The box will change to green when the desired amount is reached - When the TO is satisfied with the report, select "Confirm Load Plan" button to submit to PJM ## **TO Load Shed Plan** The required MW amount to relieve the PCLLRW
will be listed Load Reduction Megawatt Amount Needed As data is entered, the Cumulative Load Shed Relief will update Cumulative Load Shed Relief 0 - Highlighted red until desired amount has been reached - Box then changes to green When the TO is satisfied with the report, select "Confirm Load Plan" button to submit to PJM Confirm Load Plan Cancel ## **TO Load Shed Plan Display** # **TO Load Shed Plan Display** ## **TO Load Shed Plan Deficient** - If a submitted TO Load Shed is deficient: - A warning message received indicating such - Adjust load shed to satisfy needed amount #### Multiple Zones, Manual 13: - PCLLRW is issued to TO of overloaded equipment - Enough load must be shed to maintain flows on the monitored facility below the Emergency Rating or an agreed upon level - If sufficient load is not available to shed or sufficient time to shed is not adequate - TO shall inform PJM so they to include neighboring TO loads if applicable or develop an alternative plan to control **Note:** If all of the load to be shed is in the non-owning Transmission Owner's territory, PJM may issue the PCLLRW to the Transmission Owner with the load and not the Transmission Owner of the limiting equipment. However, PJM will inform/coordinate the post contingency load shed plan with the Transmission Owner of the equipment - The tool will create TWO emails w/ the DFAX and send APS and AEP each a copy of the DFAX - The DFAX and SA alarm will show up on BOTH company's PCLLRW tool screens: - Here's the AEP PCLLRW screen. Notice the APS SA violation is there. - Both TOs can contribute to the load shed plan; however, only one at a time can edit it If a TO tries to edit the PCLLRW while another is working on it, they will see the following: Notice, the Box: "Another user is editing this Load Shed Plan" The "Transmission Owner Projected Load Shed" column cannot be edited The editing TO gets 5 minutes (but can be reset and add more time if needed) Note: the form **DOES NOT ENFORCE** TOs changing or accidentally putting data in the wrong row In this example, APS could enter numbers for AEP and vise-versa The system sends two emails, one to each TO Single posting in Emergency Procedures #### Manual 13, Section 5.4.1 - NERC Standard PRC-023 R1.2 and R1.11 - Transmission line relays and transformer overload protection relays are set so they do not operate at or below 115% of the facility's highest emergency rating - PJM facilities highest rating is the Load Dump rating. - PJM will perform the following analysis for any facility that reaches or exceeds 115% of its Load Dump limit: - Study the loss of the contingency element and the overloaded facility #### Manual 13, Section 5.4.1 - PCLLRW is issued after: - All other means of transmission constraint control have been exhausted, or - Until sufficient generation is on-line to control the constraint within designated limits and timelines - If post-contingency flow were to exceed the 15-minute Load Dump rating, the facility may trip before actions can be taken to reduce the flow within limits - To prepare for this potential N-2 (initial contingency plus the overloaded facility) and prevent a cascade: - PJM will perform up to an N-5 on facilities over 115% of their 15-minute Load Dump rating # **Cascade Analysis Simulation** #### Manual 13, Section 5.4.1 - If the study results indicate that: - No additional facilities will be overloaded over 115% of their Load Dump limit: - This is a localized event, and no additional pre-contingency actions will be taken - Additional facility(s) over 115% of its Load Dump rating, the operator will continue the analysis to also trip the additional circuits: - Analysis will be performed, tripping a maximum of 5 facilities - Either a non-converged case, or continues to show facilities exceeding 115% of their Load Dump limits: - This will be considered a potential cascade situation ### PJM's EMS has a Cascade Analysis program which is set to... - Run automatically whenever SA detects a post contingency violation which is equal to or greater than 115% of the load dump rating - Results are shown on the SA Thermals display in TNA - Provides more accurate results than manually performing cascade analysis because it removes multiple facilities from service in a single contingency This will give different results than running Power Flow after each line is removed from service in study mode #### Manual 13 Section 5.4.1 - PJM operator will review the results with the Transmission Owner and direct pre-contingency Load Shed - If the analysis at any point results in a valid non-converged contingency indicating a potential cascade - The PJM Operator will review the results with the Transmission Owner, and - Direct pre-contingency Load Shed within 30 minutes to mitigate the potential cascade situation Note: Load Shed will be directed in the amount needed to maintain the post contingency flow below 115% of the Load Dump limit on the original contingency within 30-minutes of detection of the potential cascade situation For a facility exceeding its LD, STE or LTE rating: - Contact between PJM and TO should be made immediately - In particular for a facility exceeding its LD rating - Compare real-time flows to state estimator flows For any discrepancies: - The reason is obvious and facility is not overloaded - PJM and TO should work together to resolve the discrepancy, log it and cease Load Shed Determination Procedure - The reason is not immediately obvious - PJM and TO shall agree upon the most conservative values Compare LD and Emergency ratings For any discrepancies: - The reason is obvious and facility is not overloaded - PJM and TO should work together to resolve the discrepancy, log it and cease Load Shed Determination Procedure - The reason is not immediately obvious - PJM and TO shall agree upon the most conservative values - Switching and Generation option - For a LD rating overload, there are only 3 options available to alleviate: - A reclose attempt on the facility that tripped to cause the violation - Pre-studied switching solution - Generation re-dispatch (if generation can move fast enough) #### Note: A Pre-Studied Switching Solution must be ... - A switching that had been agreed upon by both the TO and PJM which: - Had been studied prior to the initiating event for present Load Dump overload - The study should have accurately reflected the initiating event and present system topology for the area presently experiencing the Load Dump overload - The switching solution CANNOT place any other facility into a Normal Rating overload - For an Emergency (LTE or STE) overload: - May be time to study Switching Solutions and/or Generation Re-dispatch - Once overload is 5 minutes away from becoming a violation, and - If a switching solution and/or re-dispatch is not expected to relieve the overload in the next 5 minutes - Commence Load Shed Directive immediately and without delay Note: The amount of load shed required in a *Load Shed Area* is typically dependent upon the amount of load under SCADA control in the *Load Shed Area*. As such, the TO may have to shed a substantial amount of load that significantly reduces the flow across the *Overloaded Facility* (sometimes well below the NL rating on said facility) due to limited SCADA control. However, this is the desired effect, to protect the *Overloaded Facility*. If significant load shed is required, the TO should shed the load first to protect the facility... then, in coordination with PJM, fine-tune the load shed afterwards with the help of additional TO personnel (substation, switchman, etc.) - The following is meant to be a template script for issuance of a Load Shed Directive - The Script should be readily available to both PJM and TO operators as a reference - The intent of the script is for familiarity and easy recognition of the gravity of the situation - Both operators should take special note that the tone of the Directive is meant to be formal, clear and specific - At the beginning, during and at the completion of the Directive, there should be no ambiguity as to what is taking place or what needs to be done to alleviate the situation - As such, no extraneous conversation outside of the directive should take place either during the Directive or at the end of the Directive - If at any time during the issuance of the Directive, either party becomes distracted for any reason, they should cancel the order and commence from the beginning # **Example Script** ## **Keywords:** • *PJM Operator*: John Doe • *TO Company*: XYZ Energy • *TO Operator*: A.J. Jones • *Present Time*: 1208 • Overloaded Facility: Victorstation 345/138kV #2 Transformer (which is presently overloaded with flow from the 345kV high side down to the 138kV low side) • *Facility Flow*: 705 MVA • *Rating*: LD rating. (650 MVA) • Overload Time: 1206 • **Desired Flow**: 590 MVA LTE/STE rating • Load Shed Area: Victorstation 138kV and below # **Script Verbiage** #### **PJM Operator:** - "This is PJM Dispatcher John Doe with a Load Shed Directive." - "As of 1208, the Victorstation 345/138kV #2 Transformer is determined to be exceeding its Load Dump rating of 650 MVA and is presently loaded at 705 MVA. The facility has been exceeding its Load Dump rating since 1206." #### **TO Operator:** "I agree that as of 1208, the Victorstation 345/138kV #2 Transformer is determined to be exceeding its Load Dump rating of 650 MVA and is presently loaded at 705 MVA. I also agree that the facility has been exceeding its Load Dump rating since 1206." #### **PJM Operator:** "That is correct." # **Script Verbiage** #### **PJM Operator:** "At this time PJM is initiating a Load Shed Directive to reduce the flow across the Victorstation 345/138kV #2 Transformer to a level not to exceed 590 MVA. XYZ Energy should commence load shed in the Victorstation 138kV and below area immediately." #### **TO Operator:** "I agree that a Load Shed Directive has been ordered to immediately commence
load shed in the Victorstation 138kV and below area with the intent to reduce the flow across the Victorstation 345/138kV #2 Transformer down to a flow that does not exceed 590 MVA." #### **PJM Operator:** "That is correct. Please call me back to confirm once the load shed is completed." ## Background - PJM analysis indicates that probability of contingent facility tripping during an off-cost event is less than .05% - It's prudent to operate to a higher pre-contingency threshold (i.e. 30 minute rating) - If ample quick-start generation or switching actions are available, eliminate an actual overload should a contingent facility tripping occur - Generation must demonstrate a history of adequate availability and response #### Criteria - Outage of contingent facility must not cause a cascading outage or precipitate an uncontrolled separation within and/or external to the PJM RTO - EHV facilities not included in the program - Transmission owner of the facility will have an established short-term emergency rating (normally 30 minutes) - Facilities must have more than one quick-start CT or diesel in the vicinity, and off-line, to eliminate the contingency should it occur - Criteria: Quick-start CT or diesel must meet the following criteria: - An availability of 120% of necessary generation to obtain the required MW relief from 30 minute rating to normal rating must be demonstrated (Account for the possibility of some generation not starting) - Net generation must have history of being on-line and loaded within 30 minutes 85% of the time - Where available, condensers will be brought on-line for control once a contingency flow reaches the 4-hour emergency rating - This program will be implemented during non-winter months for facilities where fast-start generation is used for control - Switching procedures that demonstrate successful winter implementation may be included under the program year-round - Alternative Controlling Options - TO may offer generation run-back schemes to control for these facilities - Subject to ramp rate testing data as supplied by the Generation Owner - TO may utilize switching and reclosing procedures to control for these facilities - Procedures must be studied and approved by PJM - Post-contingency switching must be implemented via SCADA control - TO must have ability to dump sufficient load via SCADA if switching procedure can not be implemented - Switching procedures may be implemented pre-contingency once contingency flow exceeds the 30-minute rating and all generation has been called - Systems designed for post-contingency switching: - On a pre-contingency basis, off-cost operations will commence once simulated contingency flow, using *Guide Implemented* contingency definitions, reaches the <u>Long-term emergency rating</u> - On a pre-contingency basis, off-cost operations will commence once simulated contingency flow, using the *Guide Failed* contingency definitions, approaches the <u>Load Dump Rating</u> - In the event of a contingent facility tripping, the appropriate guide scheme will be used to ensure flow drops below the Long-term emergency rating. - Generation redispatch, if needed, will be used to bring the flow below the normal rating ## • PJM Roles/Responsibilities - Selection/analysis/approval for facilities in program - Communicate and consult with the Transmission Owner to ensure that the analysis is accurate - Publish facilities in Manual M-03, Transmission Operations - Operate facility to Short-term rating provided by Transmission Owner - If the rating is exceeded pre-contingency, off-cost operations will be used to mitigate the simulated overload - Transmission Owner Roles/Responsibilities - Review and comment on the proposed facilities - For any disagreements concerning proposed facilities: - PJM has a Dispute Resolution Process in place - PJM will delay implementation of the facility until the disagreement is resolved - May offer additional facilities to be studied for inclusion into the program #### Generation Owner Roles/Responsibilities - Operate fast-response generation in accordance with PJM's current rules and procedures - When called upon to mitigate a transmission outage on a facility included in the program, the generation owner shall start the unit in accordance with PJM's instructions The list of facilities is in Transmission Operations Manual 3, Attachment D ## **Transmission Loading Relief (TLR)** #### NERC TLR - Transmission Loading Relief is a NERC procedure that is used to safely and effectively reduce flow on a transmission element on the bulk power system - Used in the Eastern Interconnection - Respects transmission service reservation priorities - Mitigates potential or actual Operational Security Limit violations #### • PJM TLR Definition: The PJM procedure includes the NERC procedure but incorporates generation redispatch prior to implementing the Transmission Loading Relief Procedure as a means for managing congestion #### • PJM TLR Procedure - Step 1 Implement non-cost measures to control power flow - Step 2 Curtail transactions in PJM that are "not willing to pay through congestion" - Step 3 Adjust output of generators off-cost to alleviate overloads - Step 4 Implement the NERC TLR procedure - Step 5 Curtail external customers or charge external customers for congestion - Step 6 Curtail remaining transactions in priority order #### **NERC TLR Procedure Levels** TLR Levels 1 - Notification TLR Level 2 - Hold Interchange Transactions TLR Level 3a - Reallocation Non-firm Point-to-Point TLR Level 3b - Curtailment Non-firm Point-to-Point TLR Level 4 - Reconfiguration TLR Level 5a - Reallocation Firm Point-to-Point TLR Level 5 b - Curtailment Firm TLR Level 6 - Emergency Procedure TLR Level 0 - TLR Concluded #### **Transmission Service Priorities** - Priority 0 NX Next -hour Market Service - Priority 1 NS Service over secondary receipt and delivery points - Priority 2 NH Hourly Service - Priority 3 ND Daily Service - Priority 4 NW Weekly Service - Priority 5 NM Monthly Service - Priority 6 NN Network Integration Transmission Service from sources not designated as network resources - Priority 7 F Firm point-to-point Trans Service and Network Integration Transmission Service from designated resources - Other concepts you need to know: - Power Flow Model - Flowgates - Transfer Distribution Factors - NERC E-Tags - Transmission Service Priorities - IDC (Interchange Distribution Calculator) #### Power Flow Model - Models the actual configuration of the Eastern Interconnection - Contains Generator & Transmission status - Created once every hour - Can be updated three times an hour - Reliability Coordinators are responsible for updating the model #### Flowgates - A flowgate is a boundary between two parts of a transmission system across which there may be congestion - Flowgates may cut across a number of circuits and because they "cut" across circuits, they are known as CUT SETS - The key characteristic of a flowgate is that it has a well defined limit of power that can flow across it - A flowgate may have thermal, voltage, phase angle and/or stability limitations #### Transfer Distribution Factors - Transfer Distribution Factors represent the impact of an interchange transaction between one control area to another control area on a given flowgate - There are two types of Transfer Distribution Factors (TDF) calculated - Power Transfer Distribution Factors (PTDF) These factors are calculated to consider the effect of a transaction on a flowgate - Outage Transfer Distribution Factor (OTDF) These factors are calculated to consider the effect of a transaction on a flowgate after an outage of another facility #### **NERC E-Tags** - Provide a tag name to determine the Source and Sink Control Areas - Provides OASIS information to determine priority - Provides the energy profile to determine MW flow - Each E-TAG will have Transfer Distribution Factor assigned by the IDC per individual flowgate - Only Interchange Transactions with a TDF of 5% or greater are subject to TLR Curtailments #### Interchange Distribution Calculator (IDC) - Primary tool used for NERC TLR - Calculates Transfer Distribution Factors (TDF) for specific flowgates - Uses an updated power flow model of the Eastern Interconnection - Obtains interchange transaction data from NERC E-Tags - Provides TLR Level notification - Creates Curtailment report for specific flowgates #### Purpose - Allows for BRIEF deviations from thermal operating criteria to accommodate switching - Results in maintaining system integrity by keeping lines/facilities in service during these short term excursions - Reduces the occurrence of unnecessary off-cost operation - Normal Limits can be exceeded briefly without damaging equipment due to the lengthy thermal time constants for heat build-up in equipment - Supported by Equipment Engineers #### Requirements - Pre-agreement by PJM OPD, PJM Dispatch and TO Dispatch (and anyone else who is involved) - If the above parties are not in agreement on the use of this procedure, the procedure should not be utilized - Planned event MUST be pre-studied on a case by case basis - Each operation or use of this procedure should be documented and logged - Requirements (con't) - PJM will NOT allow actual operation over the Emergency thermal rating on an actual basis for ANY period of time - Operation over the normal rating will be tolerated for up to 5 minutes (with an approved "back-out" plan) - PJM will NOT allow operation over the Load Dump rating on a post-contingency basis for ANY period of time - Operation over the Emergency Rating on a post-contingency basis will be tolerated for up to 5 minutes (with an approved "back-out" plan) - Requirements (con't) - Planned event (overload) should take no longer than 5 minutes - "Back-out" plan must be in place to alleviate the overload should event be extended due to unexpected circumstances - Back-out Plan - Must be agreed to by all parties - Must
not impact other members - Must return overloaded facility within limits in 15 minutes or less from the start of the outage - Must have sufficient redundancy - SCADA and physical control - Variety of options - Multiple CTs - Must be pre-studied and studied for actual system conditions #### General - Communication and Coordination are the keys to success of this procedure - PJM ← TO, TO ← Field - All personnel must be in place and ready to implement "Back-out" plan if it becomes necessary - No safety or standard switching procedures should be violated in implementing the back out plan - ALL requirements of this procedure must be met to allow for the application of this procedure - This procedure is an option available to the TO and may not be applicable for all situations PAL Power wants to take out line Amus — Ash B Line for maintenance. If the Grange Steel Plant arc furnace is on, the load on the A Line increases to 115 MW. PAL Power says that these furnaces generally only run for a 10 minute cycle, then the loading will return to under the 100 MW limit. They have a "backout" plan in case the arc furnace stays on longer than expected, running the Moses CTs will reduce the A Line flow under the 100 MW limit Is this a candidate for the Constraint Management Mitigation Procedure? - This action is <u>NOT</u> a candidate for the Constraint Management Mitigation Procedure for the following reasons: - The Emergency limit on A Line can not be exceeded for any length of time - In this example the Emergency limit would be exceeded for at least 10 minutes - The Moses CTs are 20 minutes from the bus - The "back-out" plan must alleviate the overload within 15 minutes PAL Power wants to take out Line A for 1 week for maintenance. If all 3 pumps are on at the Baker Pumped Hydro Plant, a contingency exists on Line C for the loss of Line B (with Line A out of service). This contingency is over the emergency rating on Line C (on a contingency basis) but under the Load Dump Rating. PAL Power has a "back-out" plan of dumping one of the three pumps at Baker Pumped Hydro Plant (which they own) to bring the loading on Line C back under the normal rating in within 10 minutes Is this a candidate for the Constraint Management Mitigation Procedure? - This action is <u>NOT</u> a candidate for the Constraint Management Mitigation Procedure for the following reason: - The Contingency on Line C will exist for more than 5 minutes - The Constraint Management Mitigation Procedure allows for operation over the applicable Emergency Rating on a post contingency basis for up to 5 minutes only PAL Power wants to take out the 1 TR at Kincaid Sub for maintenance. The high side disconnect of the transformer is non-load break and must be operated de-energized. This will entail switching out the Jenkins – Kincaid line to open the disconnect. The Jenkins – Kincaid line can then be switched back into service. However, while the Jenkins – Kincaid line is off, studies indicate Line F will be over emergency rating (under Load Dump) for the loss of Line W. The back-out plan is to open the bus tie CB at Homer Station to alleviate the contingency if necessary. This plan has been studied and will alleviate the contingency immediately upon opening the tie CB. Personnel are in place at all three substations for the switching and it is anticipated that the disconnect can be opened in less than 5 minutes. All those affected by this plan have been notified and are in agreement with the plan Is this a candidate for the Constraint Management Mitigation Procedure? - This action <u>IS</u> a candidate for the Constraint Management Mitigation Procedure for the following reasons: - The contingency on Line F for the loss of Line W is only expected to last for less than 5 minutes - The contingency on Line F is over the Emergency Rating but UNDER the Load Dump Rating - The Back-out plan will relieve the contingency in a total time of under 15 minutes. The back-out plan was approved by all parties and studied thoroughly #### Definition A high and/or low limit placed on voltage to avoid damage to equipment and maintain power system voltage levels at a reliable level #### Affected equipment - Motors - Transformers - Generators - Loads - Capacitors - Determination of Voltage Limits - Maintain system reliability - High voltage limits are equipment related - Low voltage limit are system related - Established by equipment manufacturers - ANSI Standards provide basis for voltage schedules - 97.5% 105.0% Normal - 95.0% 105.8% Emergency - These limits are for customer voltage - Consequences of deviations from voltage limits - Low voltage - Dim lights - Slow heating of heating devices - Difficulty starting motors - Overheating/damage to motors - High voltage - Light bulb life decreased - Electronic devices life decreased | Limit | 765 kV | 500 kV | 345 kV | 230 kV | 161 kV | 138 kV | 115 kV | 69 kV | |-------------------|--------|--------|--------|--------|--------|--------|--------|-------| | Normal
High | 803.3 | 550 | 362.3 | 241.5 | 169.1 | 144.9 | 120.8 | 72.5 | | Normal
Low | 726.8 | 500 | 327.8 | 218.5 | 153 | 131.1 | 109.3 | 65.6 | | Emerg
Low | 703.8 | 485 | 317.4 | 211.6 | 148.1 | 127 | 105.8 | 63.5 | | Load
Dump | 688.5 | 475 | 310.5 | 207.0 | 144.9 | 124.2 | 103.5 | 62.1 | | V-drop
Warning | 5% | 2.5% | 5% | 5% | 5% | 5% | 5% | 5% | | V-drop
Limit | 8% | 5% | 8% | 8% | 10% | 10% | 10% | 10% | - Transmission Owners may specify bus-specific voltage limits - Submit limit in writing to PJM, Manager Operations Planning - PJM will evaluate these limits for reasonableness - PJM will return confirmation of new limits to SOS representative when limits are in EMS - PJM will forward new limits to System Planning for use in future planning studies - Provided engineering justification exists, PJM allows member company to set more restrictive voltage limits Manual M-03, Attachment C for details ## **Causes of Low Voltage** - Due to excessive VAR loading - Usually seen as voltage drop in an area rather than a single bus - Due to voltage regulation malfunction - Generator voltage regulator may fail - Transformer tap changer hang-up - Usually seen as voltage decrease at a single bus - May result in an imbalance in MVAR flows or circulating MVAR - Due to Geo-Magnetic Disturbance - Increased VAR requirement in system - Var absorption by EHV transformers ## **Causes of High Voltage** - Due to light load - Caused by excess line capacitance - Voltage rise in area rather than a single bus - Due to switching in a line with high capacitive charging current - Reactive supplied by charging of line - Also caused by: - Voltage regulation malfunction - Excess VAR sources on system ## **Detection of Voltage Problems** - Observe Critical Bus Voltages - Where do problems appear first? - Observe Voltages in an Area - Determine if deviation is on a single bus or over an area on the system - Observe Voltage Alarms - Monitoring Sources - EMS, map board, trends, field reports, customer complaints - Monitor voltages, limits, alarms, and MVAR flow #### **VAR Sources and Sinks** - Voltage Control Means MVAR Control - Control of voltage and reactive power are inseparable! - MVAR sources support or hold up voltages - Capacitors - Generators / Synchronous Condensers - Static VAR Compensators - System Capacitance - MVAR sinks pull down voltages - Reactors - Generators / Synchronous Condensers - Loads - System Inductance/Mvar Losses - Static VAR Compensators ## **System Voltage Characteristics** • Results - a constantly changing voltage profile ## **System Voltage Characteristics** • Results - for light loads, voltage can rise due to low losses and line capacitance The Ferranti effect is an increase in voltage occurring at the receiving end of a long transmission line, above the voltage at the sending end when the line is energized, but there is a very light load or the load is disconnected #### • Dependent on: - Source voltage - Line Length • Line open at one end - Switching Operations - Open one end - Provides VARs to closed end of line due to line capacitance VARs supplied by charging of line | MVARs Supplied by Lines and Cables | | | | |------------------------------------|-------------------|--------------------|--| | Voltage | Transmission Line | Transmission Cable | | | 765 kV | 4.6 MVAR/Mile | | | | 500 kV | 1.7 MVAR/Mile | | | | 345 kV | 0.8 MVAR/Mile | 15–30 MVAR/Mile | | | 230 kV | 0.3 MVAR/Mile | 5-15 MVAR/Mile | | | 115 kV | 0.1 MVAR/Mile | 2-7 MVAR/Mile | | - Line connected to load - Real Power (MW) losses increase with load - Reactive Power (MVAR) losses increase with load - Surge Impedance Loading - Loading point where VAR losses on a line equal VARs generated by line - -765 kV = 2100 MW - -500 kV = 850 MW - -345 kV = 400 MW - 230 kV = 135 MW **Surge Impedance Loading Example** As line loading increases: Reactive losses <u>increase</u> proportional to I² Reactive supply <u>decreases</u> proportional to V² As line loading decreases: Reactive losses <u>decrease</u> proportional to I² Reactive supply <u>increases</u> proportional to V² # **Voltage Operating Criteria** - PJM will operate so that no monitored facility will violate: - Normal voltage limits on an actual or continuous basis - Emergency voltage limits following any simulated facility malfunction or failure - If a limit is violated, system readjustment should take place within 30 minutes but a 60-minute maximum time is allowed prior to issuing a Post-Contingency Local Load Relief Warning (PCLLRW) # **Voltage Operating Criteria** | Voltage Limit Exceeded | If Actual Voltage Limits Are Violated | Time to Correct
(Minutes) | |--|---|---| | High Voltage | Use all effective non-cost and off-cost actions | Within 15 minutes | | Normal
Low | Use all effective non-cost actions, off-cost actions and emergency procedures except load dump | Within 15 minutes, load shed is not used | | Emergency Low | All of the above plus, shed load if voltages are decaying | Within 5 minutes | | Load Dump Low | All of the above plus, shed load if analysis indicates the potential for a voltage collapse | Immediate | | Pre-Contingency Transfer Limit Warning Point (95%) | actions. Prepare for emergency procedures except Load | | | Pre-Contingency Transfer Limit | All of the above including Load Shed Directive if analysis indicates potential for voltage collapse | Within 15 minutes or less depending on the severity | # **Voltage Operating Criteria** | Voltage Limit Exceeded | If Post Contingency Simulated Voltage Limits Are Violated | Time to Correct
(Minutes) | |---|---|---| | High Voltage | Use all effective non-cost actions | Within 30 minutes | | Normal Low | Use all effective non-cost actions | Not applicable | | Emergency | Use all effective non-cost actions, off-cost actions, and emergency procedures except load dump | Within 15 minutes, load shed is not used | | Load Dump Low | All of the above plus, shed load if analysis indicates the potential for a voltage collapse | Within 5 minutes | | Voltage Drop Warning | Use all effective non-cost actions | Not applicable | | Voltage Drop Violation | All effective non-cost and off-cost actions plus, shed load if analysis indicates the potential for a voltage collapse | Within 15 minutes | | Post-Contingency Transfer Limit Warning Point (95%) | Use all effective non-cost actions. Prepare for off-cost actions. Prepare for emergency procedures except Load Shed Directive | Not Applicable | | Post-Contingency Transfer Limit | All of the above including Load Shed Directive if analysis indicates potential for voltage collapse | Within 15 minutes or less depending on the severity | # **Controlling Voltage Violations** #### **Non-Cost Responses to Voltage Violations** - Capacitors - Reactors - Variable reactor tap position - Static Var Compensators setpoint - Generator excitation - Transformer tap position - Phase Angle Regulator tap position - Switch lines or cables out of service # **Controlling Voltage Violations** #### Off-cost Responses to Voltage Violations - Curtail Non-firm transactions NOT willing to pay congestion (prior to generation re-dispatch) - Re-dispatch generation - Dispatch synchronous condensers - Initiate ALL Emergency Procedures EXCEPT Load Shed - Including Manual Load Dump Warning # **Controlling Voltage Violations** #### Load Shedding Response to Voltage Violations - Determine if load shedding is required - All other control actions have been exhausted - Under emergency low or load dump low voltage limit on an actual basis or Reactive Transfer Limit to avoid voltage collapse - Under load dump low voltage limit or voltage drop violation limit on contingency basis if analysis indicates potential for voltage collapse - Determine amount of load shed necessary - Shed load proportional among Native Load customers, Network customers and firm point-point service 362 kV High Voltage Limit Condition: Actual Voltage exceeds High Voltage limit - Time to correct: 15 minutes - Corrective Actions include: - Capacitor/Reactor switching - Tap changer adjustment - Generator/synchronous condenser excitation adjustment - Switching lines/cables out of service* (*Facilities 500 kV & Above) - Off-cost generation adjustments 328 kV **Normal Low Limit** 317 kV Emergency Low Limit 310 kV Load Dump Limit 362 kV High Voltage Limit Condition: Actual Voltage is <u>less than</u> Normal Voltage limit but <u>greater than</u> Emergency Low Voltage limit - Time to correct: 15 minutes - Corrective Actions include: 328 kV **Normal Low Limit** - Non-cost actions - Capacitor switching - Generator excitation adjustment - Tap changer adjustment - Off-cost generation adjustment - All emergency procedures <u>EXCEPT</u> load dump 317 kV Emergency Low Limit 310 kV 362 kV High Voltage Limit Condition: Actual Voltage is <u>less than</u> Emergency Low Voltage limit but <u>greater than</u> Load Dump Low Voltage limit - Time to correct: 5 minutes - Corrective Actions include: - Non-cost actions - See previous slide - Off-cost generation adjustment - All emergency procedures - If voltages are decaying to Load Dump limit, shed load to return voltages to Normal Low 328 kV **Normal Low Limit** 317 kV Emergency Low Limit 310 kV 362 kV High Voltage Limit Condition: Actual Voltage less than Load Dump Low Voltage limit - Time to correct: Immediate - Corrective Actions include: - Non-cost actions - Off-cost generation adjustment - All emergency procedures - If voltages are at or below Load Dump limit, shed load to return voltages to Normal Low limit 328 kV **Normal Low Limit** 317 kV Emergency Low Limit 310 kV 362 kV High Voltage Limit Condition: Post-contingency Voltage exceeds High Voltage limit - Time to correct: 30 minutes - Corrective Actions include: - Capacitor/Reactor switching - Tap changer adjustment - Generator/synchronous condenser excitation adjustment - Switching lines/cables out of service (*Facilities 500 kV & Above) 328 kV **Normal Low Limit** 317 kV Emergency Low Limit 310 kV Load Dump Limit Example 345 kV Facility 362 kV_ High Voltage Limit Condition: Post-contingency Voltage less than Normal Low Voltage limit but greater than Emergency Low Voltage limit - Time to correct: not applicable - Corrective Actions include: - Non-cost actions only - This situation is considered a Trend and should be monitored, however, no off-cost measures will be taken to correct 237 328 kV **Normal Low Limit** 317 kV Emergency Low Limit 310 kV 362 kV High Voltage Limit Condition: Post-contingency Voltage less than Emergency Low Voltage Limit but greater than Load Dump Low Voltage Limit Time to correct: 15 Minutes 328 kV **Normal Low Limit** - Corrective Actions include: - Non-cost actions - Off-cost generation adjustment - All emergency procedures **EXCEPT** load dump 317 kV Emergency Low Limit 310 kV Load Dump Limit 362 kV - High Voltage Limit Condition: Post-contingency Voltage less than Load Dump Low Voltage Limit - Time to correct: 5 Minutes - Corrective Actions include: - Non-cost actions - Off-cost generation adjustment - All emergency procedures - Shed load pre-contingency if necessary to avoid voltage collapse (System wide problem) 239 328 kV - **Normal Low Limit** 317 kV Emergency Low Limit 310 kV Condition: Post-contingency Voltage Drop (%) exceeds Voltage Drop Warning but is less than Voltage Drop Violation - Time to correct: N/A - Corrective Actions include: - Non-cost actions only - This situation is considered a Trend and should be monitored, however, no off-cost measures will be taken to correct 4 - 6 % Voltage Drop Warning 5 - 8 % Voltage Drop Violation Condition: Post-contingency Voltage Drop (%) exceeds **Voltage Drop Violation** - Time to correct: 15 Minutes - Corrective Actions include: - Non-cost actions - Off-cost generation adjustment - All emergency procedures - Shed load pre-contingency if necessary to avoid voltage collapse 4 – 6 % Voltage Drop Warning 5 - 8 % Voltage Drop Violation # **Voltage Operating Criteria Exercises** #### • Scenario #1: Your security analysis program shows that for the loss of the Elmer Unit #1 the 500kV Bus voltage at Elmer would drop to 470 kV. Is this exceeding any post-contingency simulated voltage limit? If so which one and how long do you have to correct and what actions are used? #### • Scenario #2: Your security analysis program shows that for the loss of the Elmer – Rockford 500 kV Line the Rockford 230 kV Bus voltage drops to 215 kV. Is this exceeding any post-contingency simulated voltage limit? If so which one and how long do you have to correct and what actions are used? #### • Scenario #3: Your security analysis program shows that for the loss of the Elmer – Wheeler 230 kV Line the Wheeler 230 kV Bus voltage drops to 209 kV. Is this exceeding any post-contingency simulated voltage limit? If so which one and how long do you have to correct and what actions are used? #### • Scenario #4: Your security analysis program shows that for the loss of the St. John Unit #1 the St. John 230 kV bus voltage will experience a 9% voltage drop. Is this exceeding any post-contingency simulated voltage operating criteria? If so which one and how long do you have to correct and what actions are used? #### • Scenario #5: The Elmer terminal of the Elmer – Rockford 500 kV Line trips open. As a result the Rockford bus voltage is now 554 kV. Is this exceeding any voltage limit? If so which one and how long do you have to correct and what actions are used? # **Voltage Control with Generators** # **Voltage Control Background** - Generators are a Major Source of MVARs - VAR supply controlled by field excitation - VARs don't travel well - Use units electrically close to the voltage problem - Response to Generator Excitation Changes - Voltage at output of generator controlled by voltage regulator - Normally on automatic control (NERC Standard VAR-002-4.1) - If voltage regulator is out of service, eDART ticket is required - Can be manually controlled # **Adjustments in Generation to Control Voltage** - Response to Generator Excitation Changes - Voltage regulator controls excitation - System voltage decreases - Voltage regulator senses decrease --> Excitation increased by voltage regulator --> VAR generation increases --> Output voltage increases (VAR flow on transmission line increases) - System voltage increases - Voltage regulator senses increase --> Excitation decreased by voltage regulator --> VAR generation decreases --> Output voltage decreases (VAR flow on transmission line decreases) - Power
(MW) output not affected by excitation # **Generator Automatic Voltage Regulator Status** - Per NERC Standard VAR-002-4.1 - R3. Each Generator Operator shall notify its associated Transmission Operator of a status change on any generator reactive power resource, including the status of each automatic voltage regulator, power system stabilizer, or alternative controlling device within 30 minutes of the change - If the status has been restored within 30 minutes of such change, then the Generator Operator is not required to notify the Transmission Operator of the status change - Reporting of AVR status and Reactive Capability changes accomplished via eDART generator reporting # **Adjustments in Generation to Control Voltage** - Effect of Adjusting MVAR Output of a Single Generator with Radial Load (A radial system has only one power source for a group of customers) - Increase in excitation - MVAR output increases - Voltage profile shifts upward - Results in voltage increase at generator output and at load bus - Effect is reduced further from generator due to MVAR losses on line ### **Adjustments in Generation to Control Voltage** - Effect of Adjusting MVAR Output of a Single Generator with Radial Load - Decrease in excitation - MVAR output decreases - Voltage profile shifts downward - Results in voltage decrease at generator output and at load bus ## **Adjustments in Generation to Control Voltage** - Adjustments of Multiple Units at Single Station - Coordinate shifts of multiple units together - Otherwise, voltage regulators of other units may increase or decrease excitation to compensate for desired change - Results in unwanted VAR flow - Result of not adjusting all units - Voltage does not change as planned - Units may shift to absorbing VARs - Units may become under or over-excited ## **Adjustments in Generation to Control Voltage** - Adjustments in an Interconnected System - More complicated due to VAR flows - Voltage response - Increased VAR supply in local area will cause voltage rise in that area - Amount of voltage rise is diminished by VAR flow out of that area - Voltage rise is largest near VAR supply - Gradually decreases further from VAR supply - At some distance and beyond, no voltage effect will be seen - Generating Unit - Unit Over-excitation - Limit on field heating, limits MVAR generation - Rotor overheating is I²R heating caused by DC current over-excitation - Generating Unit - Unit Under-excitation - Limit on end turn heating - Unit instability - Field strength too weak, unit goes unstable - Area Stability, Salem, PS South - Generating Unit - MVAR output limited by D-curve - May be limited by auxiliary bus voltage limits - Voltage regulator limits - Voltage regulator operates only within designed voltage limits - Designed to limit amount of MVARs that can be generated - Power factor limits - Units are limited to operating within certain pf limits - MW tradeoff - Above certain MVAR output, MW must be traded to get additional MVAR output - Power System - Must coordinate shifts in generation to obtain desired MVAR flows and voltage adjustments - Should coordinate generation voltage adjustments with switchable sources (capacitors and reactors) - Do not remove all VAR reserve from a generating unit ### **Voltage Schedules** - NERC Standard VAR-001-5: - Each TOP shall: - Specify a voltage or reactive power schedule (setpoint and bandwidth) - Provide the schedule to the GOP, and direct the GOP to follow the schedule with its AVR in service (automatic) - Provide the GOP with the notification requirements for deviations from the schedule - Provide the criteria used to develop the schedules - The TO/TOP Matrix identifies shared or assigned responsibilities ### **Voltage Schedules** #### • PJM: - Requires the following subset of generators to follow voltage schedules: - Individual generating units > than 20 MVA - Generators that aggregate to 75MVA or greater that are connected to a common bus - Black start generators - Any other Generation Owners/Operators that request a voltage schedule - Generator Voltage Schedules through PJM's eDART application ensures consistent tracking and reporting protocols for communication between PJM, TOs and GOs concerning generator voltage schedules - Annually, PJM shall initiate a voltage schedule review - TOs shall review and update each schedule with the GOs acknowledgement - Allows TOs to specify, and PJM to approve, Voltage Schedules for all generating units to include: - Submitting a new ticket, Editing an existing ticket, handling of exemptions, reporting, processing and seasonal verification - Generators that require a Voltage Schedule: - Individual generating units > 20 MVA - Generators aggregating to 75 MVA or > connected to a common bus - Black start generators - Any other GOs that request a voltage schedule - Generators added to eDART that meet the above criteria will have a blank "Needs Schedule" ticket automatically entered requiring a new Voltage Schedule ticket to be submitted by the TO - Each Voltage Schedule ticket shall contain: - A target voltage schedule - Upper and lower bandwidths - The regulated transmission bus - Each schedule can either be PJM's default voltage schedule, or a schedule as designated by the local Transmission Owner | | PJM Default Generator Voltage Schedules | | | | | | | | | |--------------------|---|---------|---------|---------|---------|---------|---------|---------|---------| | Voltage Level (kV) | 765 | 500 | 345 | 230 | 161 | 138 | 115 | 69 | 66 | | Schedule (kV) | 760.0 | 525.0 | 350.0 | 235.0 | 164.0 | 139.5 | 117.0 | 70.0 | 67.0 | | Bandwidth (+/- kV) | +/-10.0 | +/- 8.0 | +/- 7.0 | +/- 4.0 | +/- 4.0 | +/- 3.5 | +/- 3.0 | +/- 2.0 | +/- 1.5 | - A voltage schedule can be based on the TO's specifications: - Voltage - Reactive Power - Power Factor - Manual (TO Exemption) | AVR Operating Mode | Expected Generator Response | | | | |--|--|--|--|--| | Automatic controlling voltage (voltage schedule) | Reactive output varies based on the grid system needs to maintain the reference voltage within the assigned voltage schedule's bandwidth up to the reactive capabilities of the generator. This is the standard voltage control operating mode for most generators in PJM. | | | | | Automatic controlling MVARs (MVAR schedule) | Reactive output remains steady based on scheduled MVARs | | | | | Automatic controlling power factor (power factor schedule) | Reactive output varies based on the real power output of the generator to maintain a constant ratio of real power versus apparent power (constant power factor) | | | | | Manual | Reactive output varies based on the manual adjustments made by the plant operator | | | | ### **Voltage Schedule Responsibilities** TO #### Specify TO-Specified or PJM Default Voltage Schedule Specify Voltage Schedule Type: Voltage, Power Factor, or Reactive Power Provide Target Voltage Schedule & Tolerance Band Attach Voltage Schedule Letters (Optional) Submit Exemption Requests PJM #### Review Maintain List of Applicable Units (M-03 Sect. 3.11) Review and Acknowledge Voltage Schedules Coordinate adjacent TO/External Voltage Schedules Approve Exemption Requests Initiate Annual Voltage Schedule Reviews GO #### Acknowledge Acknowledge Voltage Schedules Provide feedback on Voltage Schedule through GO Comments ## **Voltage Schedule Ticket Process** ## Accessing the Voltage Schedules Ticket (GO) - After logging into eDART, click on the Generation Tickets Button to access the Generator Tickets Main Menu. - The Generator Outage Main Menu is shown on the right. - Click on the Voltage Schedule button and you will arrive at the Voltage Schedule Page - Button will be red if there is a required action by the GO ### **Starting Screen** #### **Ticket Details** ### **Ticket Details** Required Entries Optional Entries ### **Ticket Details** - The "Effective Date" is the day the ticket is in effect: - Applies to all four types of Voltage Schedules - The date cannot be the day the ticket was submitted - Earliest "Effective Date" allowed is the next day (submission date + 1 day) - No two tickets can start on the same day. - Error returned if user submits a future ticket with the same effective date as one that already exists for the unit. ## **Acknowledging a Reviewed Voltage Schedule Ticket** - A ticket in "GO Acknowledged" status will turn "Active" once the effective date of the ticket has been reached - Old Active Voltage Schedule tickets are automatically "Completed" once a new GO Approved ticket turns active by reaching its Effective Date. - Active tickets are highlighted by a mint-green tab on the Voltage Schedule Tickets listing #### Peak Loads - Maximum load period cause large voltage drops across system due to heavy MVAR flow - Maximum VAR loading degrades voltage support - System voltages are lowered - Voltages most affected near VAR loads - Voltages can be improved by increasing VAR supply as close as possible to loads - Switch reactors out of service - Switch capacitors into service - Light Load Periods - Real power flows are minimized - Fixed capacitors and system capacitance dominate - System voltages rise - Customer voltages may exceed upper limits - Voltages can be lowered by adding VAR sinks to the system - Switch capacitors out of service - Switch reactors into service - Capacitors - Supply VARS - Locating capacitors near the load has two effects - Reduces system VAR flow to the load - Reduces line loading - Reduces voltage drops due to IX component - Provides additional VARs to the system which causes voltage to rise ### **Automatic Switching of Capacitors**
Programmable Logic Controller #### Reactors - Reactors serve as VAR sinks - Absorb VARs from the system - Cause voltage to decrease - Placed on transmission system - Most effective when close to VAR sources - End of transmission cables - Prevent unnecessary VAR flows - Static VAR compensators - Automated impedance matching device - Set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks - No significant moving parts - Comprised of one or more banks of fixed or switched shunt capacitors or reactors - At least one bank is switched by thyristors - Static VAR compensators - Used in two main situations: - On the power system, to regulate transmission voltage - Near large industrial loads, to improve power quality ### **Limitations and Restrictions** - Switching Schedules - Many capacitors and reactors are switched by schedule - Fixed capacitors and reactors - Time switched - Load switched - kVAR load switched - Voltage switched - Manual switched - Programmable Logic Controller (PLC) # **Capacitor Switching Philosophy** - PJM, in coordination with the TOs, attempts to minimize capacitor switching when possible - Switching of reactive resources 230 kV and above must be done at the direction of the TOP - Automatic capacitor switching capability on facilities 230 kV and above must be documented in Manual 3, Section 3 - Switching reactive devices connected to 138 kV and below may be done without notifying PJM - However TOs should evaluate the impact of adding and removing reactive devices as well as adjusting LTCs so as not to violate any voltage limits ### **Reactive Resource Outages** - The Transmission Owners are responsible for reporting outages on all facilities contained within the Transmission Facilities List Database - These lists include reactive resources and can be found on PJMs website at the following link: - http://www.pjm.com/markets-and-operations/transmission-service/transmission-facilities.aspx - In addition to complete outages, if a capacitor bank's rated MVAR capability has been significantly changed: - Should also be communicated to PJM for modeling purposes as well as updated in the Transmission Owner's EMS model #### **Limitations and Restrictions** - Capacitor is Less Effective as Voltage Decreases - MVAR output proportional to square of voltage - When needed most, capacitors provide the least support $$MVAR\ Output = MVAR_{Rated} \left(\frac{V_{Actual}}{V_{Rated}}\right)^{2}$$ As an example, if a 100 Mvar capacitor (rated 100 Mvar at 345 kV) is in service at a voltage of 340 kV the capacitor output is: $MVAR Output = 100 MVAR \times (340kV/345kV)^2 = 97 MVAR$ # **Transformer Load Tap Changer Operations** ### **Voltage Control with LTCs** - Load Tap Changer (LTC) or Tap Changer Under Load (TCUL) Operation: - Weak bus vs. strong - If a transformer is connected to a "weak" reactive power source, it will not be effective in controlling the voltage on the other winding - When it "pulls" VARs from the primary, the primary voltage drops - This offsets any gains that might have been made to the secondary voltage A mechanical under- load tap changer (ULTC) design, changing back and forth between tap positions 2 and 3 # **Strong Bus Example** # **Weak Bus Example** ### **Tap Change Operation** - Maintain System Voltage Profile - Transformer tap changers act as VAR shovels - Adjust voltage on both sides of transformer - Most adjustments to maintain constant voltage at sub-transmission and distribution levels are accomplished by automatic load tap changing - Correct Voltages Which Exceed Limits - Reduce Undesirable MVAR Flow - VAR flow control within a power system - Adjust VAR flow through a transformer - Reduce losses # **Effects of Tap Change Operation on the Power System** - Effect on Transmission Line Voltage Profile - If tap position is referenced to the low side voltage: - Voltage profile shifts upward when tap is raised - Voltage profile shifts downward when tap is lowered - Percent shift of tap position results in equal shift in percent voltage at transformer terminals # **Effects of Tap Change Operation on the Power System** - Effect of Location of Transformer on System Voltages - Effect of tap change is determined by how close transformer is to VAR sources and VAR loads - Magnitude of voltage change determined by: - Distance of tap changer from VAR source or VAR load - Tap change will have greater effect near source and less effect away from source - Magnitude of VAR source or VAR load ### **Effects of Tap Change Operation on the Power System** • Effect of Location of Transformer on System Voltages #### **Restrictions and Limitations** - Effect on Interconnected Voltages - On interconnected system, changing voltage at one location will also affect interconnected voltages - Cannot adjust single individual voltage due to interconnected nature of system - Generally must change all taps into an area to achieve the desired effect on the voltage - Must observe effects of a tap change on surrounding voltages close to tap change and coordinate tap moves #### **Restrictions and Limitations** - Unwanted VAR Flows - Shifting voltages can cause unwanted VAR flows #### **Restrictions and Limitations** - Summary of Restrictions and Limitations - Use voltage schedule to determine need to change voltage - Coordinate tap changes - Transformers in parallel must be balanced to prevent unwanted VAR flows - Change of one voltage must be coordinated with interconnected voltages # **PAR Operation to adjust voltage** - Phase Angle Regulators (PARs) change the power system phase angle at their location, allowing power flows to be regulated - All though they don't directly control voltage, they can have an impact on the voltage profile in the area they are located - If you increase the flow on parallel lines by adjusting the tap of a PAR, those lines will consume more reactive power to support the increased MW flow - This could lead to a decrease in voltage in the area of those flows if there are not any local reactive resources # **Generator Reactive Testing** #### **Generator Reactive Testing** - Reactive capability testing: - The objective of reactive capability testing is to improve transmission system reliability by accurately determining generator/synchronous condenser reactive capability on a regular basis - Demonstrates reactive capabilities for those conditions where reactive reserves or voltage control would be required - Coordinated between all affected parties to minimize impact on system conditions - PJM - Testing facility - Local Transmission Owner(s) # **Reporting Reactive Capability Data to PJM** - 1. A minimum of two curve points must be provided - 2. A maximum of eight curve points may be provided - 3. The "Unit Maximum Net MVAR Limit" must be greater than (or equal to) the "Unit Minimum Net MVAR Limit" for each curve point - 4. The "Unit Minimum, Unit Maximum Net MVAR Limit" may be equal for any number of adjacent curve points - 5. The "Unit Net MW Output" must be increasing from the first to the last point - 6. Company can either test or apply the best engineering judgment to construct D-curve at min load points #### **General Requirements** #### Applies to: - Individual generators > 20MVA - Generator plants > 75MVA total - Black Start - Synchronous Condensers > 20MVA #### Timing Requirements: - 20% of applicable facilities annually - 100% of applicable facilities within a 66 month period (Once every 5 years) #### **TESTING REQUIREMENTS SUMMARY** | UNIT TYPE | MW OUTPUT | MVAR OUTPUT | TEST DURATION | |---|-----------|-------------|--------------------| | FOSSIL, HYDROELECTRIC & BLACKSTART | MAX | MAX LAG | ONE HOUR | | | MAX | MAX LEAD | WHEN LIMIT REACHED | | | MIN | MAX LAG | WHEN LIMIT REACHED | | | MIN | MAX LEAD | WHEN LIMIT REACHED | | SYNCHRONOUS CONDENSER or | - | MAX LAG | ONE HOUR | | GENERATOR THAT OPERATES IN
THE SYNCHRONOUS CONDENSING
MODE TO PROVIDE REACTIVE
SUPPORT | - | MAX LEAD | WHEN LIMIT REACHED | | NUCLEAR | MAX | MAX LAG | ONE HOUR | | | MAX | MAX LEAD | WHEN LIMIT REACHED | | VARIABLE (E.G. WIND AND SOLAR) | VARIABLE | MAX LAG | WHEN LIMIT REACHED | | (Testing done with at least 90% of | VARIABLE | MAX LEAD | WHEN LIMIT REACHED | | turbines or inverters on line) | | | | ### Reactive Capability Testing – Scheduling the Test - Prior to scheduling the test, the MOC (Unit Owner) shall confirm with PJM RE that MW and MVAR data is being provided to PJM via ICCP - Identify/resolve any issues prior to scheduling the test - Any scheduled (or unscheduled) maintenance on the unit must be completed, and all eDART tickets closed prior to scheduling the MVAR test #### **Generator Reactive Testing** - Test Scheduling - Proposed testing dates/times should be communicated via eDART to PJM Dispatch, PJM Reliability Engineer and the TO no later than noon 3 business days prior to the test - Allows testing to be incorporated into the day-ahead studies - Test notification shall be submitted using a "MVAR Test" Ticket - Test duration - Type of test that is planned to be performed - Any additional relevant information for the test ### Reactive Capability Testing – Scheduling the Test - MOC (Unit Owner) Actions: - Submit an eDART no later than 3 business days prior to the test - Create a "MVAR Test" ticket - Specify duration of test - Description of the test type to be performed - Any other relevant information - Transmission Owner(s) (TOs) and PJM Reliability Engineer (RE) will ensure the impacts of the testing are factored into the day-ahead studies - Shorter Notification times will be considered if PJM/TOs can ensure limits will not be violated ### **Reactive Capability Testing – What does PJM do?** #### PJM Actions: - PJM RE and
Power Dispatcher will review test results ensuring there is no conflict between the testing and any planned transmission outage - PJM will suggest a more appropriate date for the test, if necessary - PJM RE and Power Dispatcher will review and approve the test in accordance with the established PJM procedure - PJM RE will ensure that PJM dispatch is aware of scheduled testing and communicate the pre-studied mitigating action plan to the PJM Control Room Staff - Once the PJM RE is contacted by the MOC or TO, they will contact all impacted TOs in order to initiate the transmission operator's study process #### **Reactive Capability Testing – What does PJM do?** #### PJM Actions: - PJM RE will: - Verify the expected unit output levels with the MOC, or TO, and ensure that the AVR is in service - Re-evaluate the pre-studied mitigating action plan prior to test commencement and communicate any adjustments to the impacted entities - Discuss possible mitigation strategies with the impacted TOs - Contact the MOC, or TO, no later than two hours prior to testing to inform them whether mitigation steps will be required - Coordinate with the appropriate MOCs and TOs in order to implement the selected mitigation strategy #### **Reactive Capability Testing – What does PJM do?** #### PJM Actions: - PJM RE will: - Coordinate with the TO and MOC in making MVAR output step changes with the testing unit - Contact the impacted entities if the testing must be cancelled or rescheduled - Coordinate the exit strategy implementation of the exit strategy with the MOCs and TOs, if required - Coordinate all actions and communications between MOCs and TOs ### Reactive Capability Testing – What do the TOs do? #### Transmission Owner Actions: - TOs conduct studies in accordance with established company procedure in order to determine the effect of scheduled testing on their systems - The TO should contact the PJM RE with any possible concerns regarding the scheduled testing - Prior to studying the test, the TO will verify, with the PJM RE and the generating station or synchronous condenser station, the expected MW and MVAR output levels of the unit during testing, and ensure that the AVR is in service - The TO will contact the PJM RE no later than 2 hours and 15 minutes prior to the test start time in order to discuss study results and the mitigating steps required, if any ### Reactive Capability Testing – What do the TOs do? #### Transmission Owner Actions: - The TOs will discuss, coordinate, and implement any actions necessary as required by mitigation strategies with PJM prior to the start of testing - The TO will communicate MVAR output step changes to the testing unit in coordination with PJM. In general, MVAR step changes should be no greater than 100 MVAR increments - If testing must be canceled or rescheduled, the TO will inform PJM RE as soon as possible - The TO will coordinate their portion of the exit strategy with PJM, and coordinate all actions through the PJM RE or Power Dispatcher #### **Generator Reactive Testing** - Communication and Coordination - MOC/GO (TO for Synchronous Condenser testing) - Coordinate and implement mitigations steps, and exit strategy as required - Notify PJM at least three hours prior to the start of the scheduled testing in order to initiate the real-time study process - If studies indicate actual or post-contingency violations that can't be mitigated, test will be rescheduled - 30 minutes notification shall be provided to allow PJM and the TO to adjust the system to ensure testing does not result in voltage limit violations - Notifies PJM of cancellation and/or rescheduling of testing ### **Reactive Capability Testing – Mitigating Actions** - Adjustments may need to be made to local voltage schedules in order to accommodate the scheduled testing - Adjustments will be considered and studied on a case by case basis - The impact of these deviations will be monitored by the TO and PJM - PJM will discuss the changes with the appropriate TO and if the recommendation does not cause a violation of a defined limitation, the TO should implement the PJM request ### **Reactive Capability Testing – Mitigating Actions** - PJM will retain control of other reactive facilities (capacitors, LTCs, etc.) - If internal plant or TO limits restrict the request, PJM dispatch will study the limitations and recommend changes to plant facilities if appropriate - If the recommended changes cannot be implemented due to equipment or facility limitations, other options will be considered, including test cancellation or rescheduling #### **Generator Reactive Testing** - Test Window - Testing period: - Maximum Lagging Test @ Maximum Real Power Output: Between 1200 and 1800 on weekdays from May 1st to September 30th - Maximum Leading Test @ Minimum Real Power Output: Between 2300 and 0700 EPT anytime of the year ### **Reactive Capability Testing – Test Conditions** - The following are steps that will be considered and agreed upon prior to allowing the scheduled generator reactive capability testing; - Each scheduled test will be studied and approved on a case by case basis - All required mitigation steps will be agreed to and coordinated with all concerned parties, - PJM RE - The responsible MOC (Unit Owner) - The appropriate TOs ### **Reactive Capability Testing – Test Conditions** - PJM will NOT allow any violations of its normal operating criteria; - No equipment may be operated above: - Its normal rating on an actual basis - Its Emergency rating on a post-contingency basis - In the event of a facility rating discrepancy between PJM and the TO that cannot be resolved, PJM will default to the most conservative limit #### **Reactive Capability Testing – Test Conditions** - PJM will NOT allow scheduled generator reactive capability testing to place the system in an unacceptable state - However, equipment failure could result in unplanned situational constraints that would require immediate remedial action - Standard mitigation steps will be taken to return the facilities in violation back to normal limits within fifteen minutes - The mitigation steps taken may not cause limit violations on any other company's equipment or facilities - PJM reserves the right to cancel the remainder of the testing ### Reactive Capability Testing – The Day of the Test - MOC (Unit Owner)will notify the PJM RE at least 3 hours before the start of the test to allow time for real-time studies to be completed - An additional 30-minute notification should be provided to PJM Transmission and TO Operators to allow adjustments to system voltages prior to the test - TO Operators will coordinate any steps required to mitigate internal plant limitations with the Plant Operators or the MOC and PJM. - If testing must be canceled or rescheduled, the MOC will inform PJM Reliability Engineer as soon as possible - The MOC will coordinate the implementation of their portion of the exit strategy with PJM, if required. #### **Generator Reactive Testing** - Exit Strategy - PJM will not allow reactive capability testing to place the system in an unacceptable state - Each test will be studied and approved on case by case basis - All mitigation steps are to be agreed upon and coordinated will all parties - No operations over pre-contingency normal ratings - No operations over post-contingency emergency ratings ### Reactive Capability Testing – What if I need to Cancel? #### Test Cancellation - PJM dispatch and/or the impacted parties may cancel the generator reactive capability testing for the following reasons: - Internal planning issues - Emergency procedures - Inability to control actual or post-contingency voltage issues created by scheduled testing - Any operating issues created on TO equipment not monitored by PJM - Cancellation of the generator reactive capability test will be communicated to all impacted parties # Reactive Capability Testing – What if I need to Cancel? PJM will document all cancellations and terminations including the party responsible and the reason for the cancellation or termination #### **Generator Reactive Testing** - Results Reporting - MOC/GO - Submit all required testing results to PJM within 30 days - Test results submitted on "PJM Leading and/or Lagging Test Form R" - PJM - Provide feedback to Generation Owners on status of their test results - Also provide test results to appropriate TO - Conduct periodic audits of test results and provide results to OC and SOS - MOC's/GOs must also review and confirm their unit reactive capability data via eDART on a bi-annual basis - Pre-Summer Review: From April 1 through April 30 - Pre-Winter Review: From October 1 through October 31 - PJM and the TOs will then verify accuracy of unit reactive capabilities modeled in their respective EMS systems - The MOC/GO must provide reactive capability curve information to PJM, the TO for the zone where the unit is located, and to any other TOs with eDART authority to receive automatic notification for the unit - Continuous Unit Reactive Capability Curve data that provides the realistic usable reactive output that a generating unit is capable of delivering to the PJM Interconnection and sustaining over the steady state operating range of the unit - For real-time changes, each MOC/GO should also notify PJM and the respective TOs via phone Planned modifications (tap changer adjustment, GSU replacements, turbine modification, etc.) that impact generator reactive capability should be communicated to the impacted TOs and PJM as far in advance as possible but no later than the return of the unit from the outage - Whenever a unit's Automatic Voltage Regulation (AVR) or Power System Stabilizer (PSS) status is off (or is planned to be off) longer than 30 minutes, the MOC/GO must immediately enter a ticket via eDART - This requirement is exempted when the Unit starting up and shutting down - For real-time changes, the GO/GOP must also notify the PJM Power Dispatcher (PD)
and the respective TOs by phone - PJM and the TOs will change the status in their EMS systems ### Reporting Reactive Capability Changes to PJM #### For **Permanent** Changes - 1. Each GO/GOP must continually provide accurate permanent capability curve changes to PJM via eDART as soon as the information is available. The "New Default" field should be checked in eDART - 2. Once the accuracy of the submitted reactive capability curve is verified, PJM will permanently update the PJM Unit Reactive Capability Curves in use by PJM Operating/Planning Studies and PJM EMS Network Applications programs ### Reporting Reactive Capability Changes to PJM #### For *Temporary* Changes - 1. Whenever a PJM unit's reactive capability is limited or reduced (or is planned to be limited or reduced) for any reason, the GO/GOP must *immediately enter a temporary ticket via eDART*. For real-time changes, the generator's owner/operator must also notify the PJM Power Dispatcher (PD) and respective LCC by phone - 2. The PJM PD will receive the ticket and either temporarily update the unit's reactive capability curve in use by the PJM EMS Network Applications, or will temporarily set the unit's AVR status in use by the PJM EMS Network Applications to "OFF" for the specified time period ### Reporting Reactive Capability Changes to PJM #### For *Temporary* Changes (con't) - 3. The GO/GOP must immediately modify the eDART ticket and notify the PJM PD and respective LCC by phone whenever the unit's normal reactive capability is (or is anticipated to be) restored - 4. The PJM PD will either restore the unit's normal reactive capability curve in use by the PJM EMS Network Applications. The PJM PD will then close the unit reactive ticket # Questions? **PJM Client Management & Services** **Telephone:** (610) 666-8980 **Toll Free Telephone: (866) 400-8980** Website: www.pjm.com The Member Community is PJM's self-service portal for members to search for answers to their questions or to track and/or open cases with Client Management & Services #### **Resources & References** PJM. (2019). *PJM Manual 3: Transmission Operations (rev. 55)*. Retrieved from http://pjm.com/~/media/documents/manuals/m03.ashx PJM. (2019). *PJM Manual 12: Balancing Operations (rev. 39)*. Retrieved from http://pjm.com/~/media/documents/manuals/m12.ashx PJM. (2019). *PJM Manual 37: Reliability Coordination (rev 16)*. Retrieved from http://www.pjm.com/~/media/documents/manuals/m37.ashx EPRI. (2009). EPRI Power System Dynamics Tutorial. Palo Alto, California: EPRI. Miller, R. & Malinowski, J. (1994). Power System Operation. (3rd ed.). Boston, MA. McGraw-Hill. Clark, H. (2004). Voltage and Reactive Power for Planning and Operation.