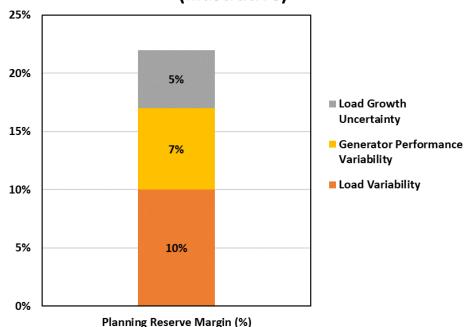
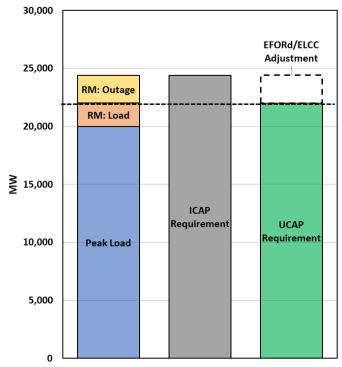
Correlated Outage Impact on Resource Reliability Contribution

Key Work Activity #2

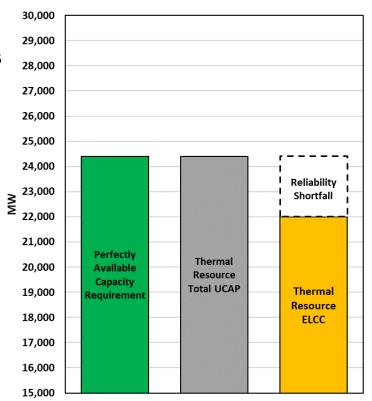

Kevin Carden Astrapé Consulting LLC 2/28/22

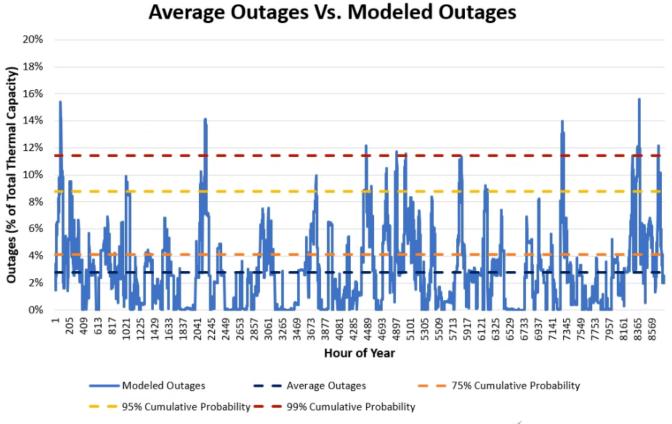
Resource Accreditation

- Planning Reserve Margin (PRM) to maintain 0.1 LOLE based on three main uncertainty factors
 - Load variability (weather/customer usage patterns)
 - Load growth uncertainty
 - Generator outage variability
- Disconnect: Generator performance variability included in PRM while renewable variability addressed via ELCC analysis

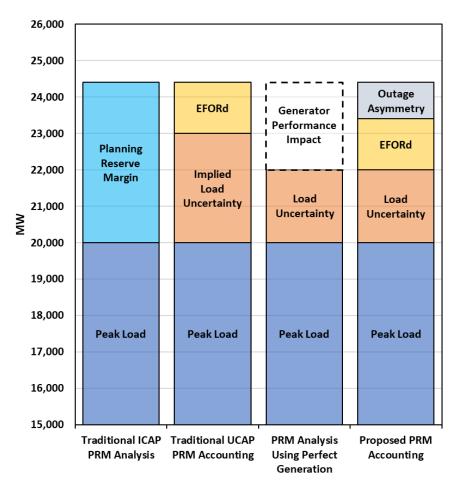

ICAP Planning Reserve Margin Components (Illustrative)

Resource Accreditation


- Under a UCAP accreditation market, resource accreditation is converted to a perfectly available capacity equivalent value
 - Thermal resources: UCAP = ICAP * (1-EFORd)
 - Renewable/energy limited resources: Effective Load Carrying Capability (ELCC)
- In theory, when normalizing for perfectly available capacity, only load uncertainty drives the UCAP RM


Resource Accreditation

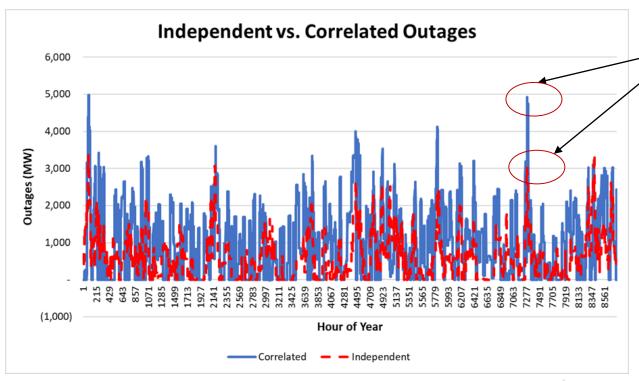
- However, UCAP accreditation may not be a good proxy for perfectly available capacity when accounting for fleet wide phenomenon of thermal resources
- Sum of all individual thermal resource UCAP values may be greater than the actual fleet wide contribution towards reliability (i.e., the thermal resource ELCC)
 - May or may not affect PRM
- Key fleet wide correlated outage categories include:
 - Outage asymmetry
 - Common mode failures
 - Weather dependent outages
 - Fuel availability outages


Correlated Outage Impact #1: Outage Asymmetry

- What level of reserves are needed to cover the impact of outages?
 - UCAP accounting using EFORd presumes only average outages need to be addressed.

Correlated Outage Impact #1: Outage Asymmetry

- Asymmetry is generally hidden in the PRM assessment.
- This issue would not be expected to affect PRM, only resource accreditation


Proposed Solution for Outage Asymmetry

- Accreditation of conventional resources could be adjusted to properly reflect their contribution to reliability
 - E.g. Conventional Generator ELCC = (1 EFORd ADJ_{Asym})
- Preliminary analysis suggests ADJ_{Asym} could be 2-5%.
- Similar adjustments proposed for other correlated outage effects.

Correlated Outage Impact #2: Common Mode Failure

- Most resource adequacy modeling randomly assigns availability status for each resource independently
- In reality, outages can be correlated between resources due to common mode failures (e.g. shared step up transformers)



When applying correlated outages to RA modeling, higher cumulative outage events emerge

Correlated Outage Impact #3: Weather Dependent Outages

- Additional correlated outage impacts observed in historical data based on weather impacts
 - Cold weather events: frozen lines, frozen valves, critical sensor failures
 - Hot weather events: extended run times, heat stress on components
- Example of historical PJM generator performance
 - Combined cycle outage rate as a function of median (black series) and 90% temperature observation (red series)
 - At -10°C, CCs experienced
 ~4% higher forced outage rate than at 0°C

Source: Murphy, Sinnott, et. al. "A time-dependent model of generator failures and recoveries captures correlated events and quantifies temperature dependence."

Correlated Outage Impact #4: Fuel Availability Outages

- Natural gas supply constraints known to occur during cold weather
- As much as 10% of natural gas supply can become unavailable at temperatures of 0F (based on review of ERCOT 2021 event, 2014 Polar Vortex, 2011 FERC report on cold weather outages)
- Leads to an increase in cumulative outages for specific resource classes such as CTs and CCGTs

Modeling Results (Winter)

- Impact of incremental outages quantified as percentage adjustment factors (ADJ) to approximate the thermal resource ELCC value
 - $ELCC_{Thermal\ Resource} = (1 EFORd\ ADJ)$

Correlated Outage Category	Adjustment Factor (%)
Outage Asymmetry	2-5%
Common Mode Failure Outages	2-3%
Weather Dependent Outages	8-10%
Fuel Availability Outages	6-10%

Recommendations

- Review historical data related to correlated outages within the PJM region
- Explore modeling practices to account for correlated outages
 - Requires definition of resource classes for thermal resources, analogous to renewable/storage ELCC calculations
 - Individual resource accreditation adjustments should be considered to appropriately distribute weather/fuel outage impacts in proportion to a unit's impact on the overall resource class ELCC

Questions?

Kevin Carden kcarden@astrape.com

