

Panhandle Wind Disturbance

Kevin Hatch, Manager Reliability Engineering

Operating Committee May 11, 2023

www.pjm.com | Public PJM©2023

 Concerning weather patterns started the evening of March 21, 2022, with severe conditions (freezing rain, snowfall, and high winds) occurring the early morning of March 22, 2022. Generator Operators (GOP) reported wind turbine icing and high wind speed cutoffs during this time period.

Predisturbance Operating Conditions

Predisturbance Operating Conditions

At the time of the disturbances, ERCOT net internal demand was 34.4 GW with wind producing nearly 21 GW (61%), synchronous generation producing 13.2 GW (38%), and imports at just over 200 MW; due to the early hours of the events, solar PV production was at zero (see Table I.1).

Table I.1: Predisturbance Resource Mix			
BPS Operating Characteristic	MW	Percent	
Internal Net Demand*	34,407	-	
Solar PV Output	0	0%	
Wind Output	20,977	61%	
Synchronous Generation	13,212	38%	

^{*}ERCOT was importing 218 MW

Overview of Disturbances

Table 1.1: Causes of Reduction for Fault 1 and Fault 2			
Cause of Reduction	Fault 1 Reduction [MW]	Fault 2 Reduction [MW]	
Consequentially Tripped	273	_	
Plant Controller Interactions	138	144	
AC Overvoltage Tripping	135	64	
Dynamic Active Power Reduction	82	128	
Subsynchronous Oscillation Tripping	64	55	
Pitch Converter Faults	57	17	
Not Analyzed	14	_	
Uninterruptible Power Supply Failure	2	_	

Table ES.1: Overview of Disturbances			
Fault	Initiating Fault Event Description of Resource Loss		
Event 1	A–B Fault on 345 kV Gen Tie Line	Loss of 765 MW of wind resources (10 facilities)	
Event 2	B–C Fault on 345 kV Transmission Circuit	Loss of 457 MW of wind resources (8 facilities)	

Recommendations for Industry Action

- Reiterated Need for Enhanced Inverter-Based Resource Ride-Through Requirements
- Strengthened Need for Performance Validation and Abnormal Performance Mitigation Requirements for Inverter-Based Resources

- NERC Event Analysis Program
- https://www.nerc.com/pa/rrm/ea/Pages/Major-Event-Reports.aspx

www.pjm.com | Public PJM©2023

Lesson Learned Combustion Turbine Anti-Icing Control Strategy

Primary Interest Groups
Generator Owner (GO)
Generator Operators (GOP)

www.pjm.com | Public PJM©2023

Combustion Turbine Anti-Icing Control Strategy

Problem Statement

 Unexpected icing due to intermittent interference from outside sources may present operating challenges

Details

 After an entity's investigation of an icing-over of a combustion turbine air inlet, it was determined that there were several situations where the original equipment manufacturer's (OEM) anti-icing logic did not detect all potential icing conditions as currently designed.

Corrective Actions

 As a result of these occurrences, the entity instituted a more aggressive combustion turbine anti-icing strategy to prevent a reoccurrence

Lesson Learned

 Ensure that manual corrective actions are proactively taken when unexpected icing may occur due to intermittent interference from outside sources

 https://www.nerc.com/pa/rrm/ea/Pages/Major-Event-Reports.aspx

LL20230401 CT Anti-Icing Control Strategy.pdf (nerc.com)

Presenter:
Kevin Hatch,
Kevin.Hatch@pjm.com

NERC Lessons Learned

Member Hotline

(610) 666 - 8980

(866) 400 - 8980

custsvc@pjm.com

