

2.8 Regulation Service

Regulation is the capability of a specific resource with appropriate telecommunications, control and response capability to increase or decrease its output in response to a regulating control signal to control for frequency deviations'

The cost-based regulation offer is split into two portions:

The Regulation Capability portion capturing consists of the fFuel cCost iIncrease and uUnit sSpecific hHeat rRate dDegradation due to oOperating at ILower ILoads and cibritThe margin risk adder may only be added to the Regulation Capability portion;

The Regulation Performance portion representing and consists of the cCost iIncrease in VOM, cost increase due to heat rate increase during non-steady state operation and, where applicable, eEnergy ILosses for eEnergy sStorage Devices. Thedevices. tThe MW value determined in the performance offer- will be converted to ΔMW by multiplying the value by the annual ratio of $\Delta MW/MW$ for the applicable signal for that offer as described in Manual 11.

<u>Regulation Capability</u> costs to provide Regulation Service from a unit shall include the following components up to but not exceeding:

Regulation Capability Regulation Costs (\$ / MW) ≤

(Fuel Cost Increase and Unit Specific Heat Rate Degradation due to Operating at Lower Loads) + Cost Increase due to Heat Rate Increase during nonsteady state operation-

(above heat rate factor not to exceed 0.35%) + Margin Risk Adder

Regulation Performance costs to provide Regulation service from a unit shall include the following components up to but not exceeding:

Regulation Performance Regulation Costs ($/ \Delta MW$) \leq

{Cost Increase in VOM

+ Cost Increase due to Heat Rate Increase during nonsteady state operation

(above heat rate factor not to exceed 0.35%) +

(Energy Storage Unit Fuel Cost Increase for Energy Storage Devices onlyLosses)}/ ΔMW/MW

Fuel Cost Increase and Unit Specific Heat Rate Degradation due to Operating at lower loads:

The costs (in \$/MWh of Regulation) to provide Regulation service from units shall not exceed the fuel cost increase due to operating the unit at lower loads than at the optimal economic dispatch level load and the unit specific heat rate degradation from operating at lower loads, resulting from operating the unit at lower MW output incurred from the provision of Regulation over the entire generator MW range of providing Regulation service.

Cost Increase due to Heat Rate increase during non-steady state:

<u>741112</u>

The cost (in \$/<u>delta_MWhh</u> of Regulation) increase due to the heat rate increase resulting from operating the unit at a non steady-state condition. This heat rate loss factor rate shall not exceed 0.35% of the top Regulation load MW heat rate value.

Margin/Risk Adder:

Margin Risk Adder shall not exceed \$12.00 per MWh of Regulation service provided.

Energy Storage Unit Losses:

Energy Storage Unit Losses can only be greater than zero for energy storage type devices and calculated in accordance with the guidance provided in section 11.8.

Cost increase in VOM:

The cost increase (in \$/<u>delta_MWhh</u> of Regulation) of variable operations and maintenance (VOM) cost resulting from operating the unit at lower MW output incurred from the provision of Regulation. VOM costs shall be calculated by the following methods and shall not exceed those levels below:

For non-hydro units that have been providing Regulation service for less than 10 years, or all hydro units regardless of the historical years of Regulation service, the following variable operation and maintenance (VOM) costs can be applied by unit type up to the following:

٠	Super-critical Steam:	\$10.00 per MWhh of Regulation
•	Sub-critical Steam:	\$3.50 per MWhh of Regulation
•	Combined Cycle:	\$2.50 per MW <mark>hh</mark> of Regulation
•	Combustion Turbine:	\$2.00 per MWhh of Regulation
•	Hydro:	\$1.00 per MWhh of Regulation
•	Energy Storage:	Based on OEM estimates initially and actual as
		history is available.

Exhibit 4: VOM for All Hydro Units or Non-Hydro Units providing service for less than 10 years

For non-hydro units that have been providing Regulation service for more than 10 years, the VOM rates above can be utilized only if the annual VOM dollar amounts resulting from those rates and included in Regulation cost based offers, are subtracted from the escalated 10 or 20 year historical total VOM accounts and the Regulation MWh based on the average of the last three years.

Energy Storage Units that participate only in regulation service shall include all their VOM in the Cost increase in VOM adder in Regulation cost offers.

Margin/Risk Adder:

Margin Risk Adder shall not exceed \$12.00 per MWh of Regulation service provided.

<u>741112</u>

For example, a 100 MW sub-critical coal fired steam unit that has been providing Regulation service for 30 years. The unit averaged 5,000 MWh of Regulation service over the last three years and the escalated 20 year historical total VOM = \$10,000,000.

Annual VOM costs to subtract

- = (\$3.50 per Regulation MWh * 5,000 MWh) * 20 years
- = \$17,500 per year * 20 years
- = \$350,000

20-year balance of historical total VOM accounts

= \$10,000,000 - \$350,000

= \$ 9,650,000

Actual Regulation VOM incremental costs submitted and evaluated pursuant to the Cost and Methodology Approval Process.

Exhibit 5: Example of VOM for Non-Hydro Units providing Regulation for more than 10 years:

For Example for a Sub-critical Coal-Fired Steam Unit providing Regulation Service for the last seven years:

Unit Operating Mode	Output	Heat Rate
Steam Unit Highest Regulating Operating Load:	100 MW	9,000 BTU/kWh
Steam Unit Regulation Band:	10 MW	
Lowest Regulating Operating Load	4 0 MW	12,500 BTU/kWh

Data Submitted by Participant	Value	Units
Fuel	\$1.50	\$/MBTU
Heat Rate @ EcoMax	9,000.0	Btu/KWh
Heat Rate @ RegMin	12,500.0	Btu/KWh
VOM	\$3.50	\$/MW of Regulation
EcoMax	100.0	MW
RegMin	40.0	MW
Unit Reg Band	10.0	MW
Margin Adder	\$12.00	\$/MW of Regulation

Heat Rate Adjustment (Operating Range)	Value	Units
Unit Base Load Heat Rate Fuel Input	360.0	MBTU/Hr
Unit Reduced Load Heat Rate Fuel Input	500.0	MBTU/Hr
Difference	140.0	MBTU/Hr

Unit Base Load Heat Rate Fuel Input				
= Unit Base Load Heat Rate * RegMin * $\frac{1 \text{MBTU}}{1.000.000 \text{ BTU}}$ * 1,000 kW/MW				
Unit Base Load Heat Rate Fuel Input = $9,000 \frac{\text{BTU}}{\text{kWh}} * 40 \text{ MW} * \frac{1,000,000 \text{ BTU}}{1,000,000 \text{ BTU}} * 1,000 \text{ kW/MW}$				
= 360 MBTU/Hr Unit Reduced Load Heat Rate Fuel Input				
= Unit Reduced Load Heat Rate * RegMin * -	= Unit Reduced Load Heat Rate * RegMin * $\frac{1MBTU}{1,000,000 BTU}$ * 1,000 kW/MW			
Unit Base Load Heat Rate Fuel Input = $12,500 \frac{\text{BTU}}{\text{kWh}} * 40 \text{ MW} * \frac{1000,000 \text{ BTU}}{1,000,000 \text{ BTU}} * 1,000 \text{ kW/MW}$ = 500 MBTU/Hr				
Difference = Unit Base Load Heat RateInput – Unit Reduced Load Heat RateInput Difference = $500 \frac{\text{MBTU}}{\text{hr}} - 360 \frac{\text{MBTU}}{\text{hr}} = 140 \frac{\text{MBTU}}{\text{hr}}$				
	111			
Heat Rate Adjustment (Non-Steady State Operation)	Value	Units		
Heat Rate Adjustment (Non-Steady State Operation) Top Operating Point Heat Rate	Value 9,000.0	Units BTU/kWh		
Heat Rate Adjustment (Non-Steady State Operation) Top Operating Point Heat Rate Heat Rate Loss Factor (Max per M15)	Value 9,000.0 0.35%	Units BTU/kWh		
Heat Rate Adjustment (Non-Steady State Operation) Top Operating Point Heat Rate Heat Rate Loss Factor (Max per M15) Heat Rate Loss	Value 9,000.0 0.35% 3.15	Units BTU/kWh MBTU/Hr		
II<	Value 9,000.0 0.35% 3.15) * 1MBT 1,000,000 J BTU * 1,000	Units BTU/kWh MBTU/Hr $\frac{\Gamma U}{0 BTU} * 1,000 \frac{kW}{MW}$ $0 \frac{kW}{MW} * 100 MW$		
IIIIIIIIIIIIHeat Rate Adjustment (Non-Steady State Operation)Top Operating Point Heat RateTop Operating Point Heat RateHeat Rate Loss Factor (Max per M15)Heat Rate LossHeat Rate Loss = (Economic Maximum Heat Rate * 0.35%)* Economic Maximum MWHeat Rate Loss = (9,000BTU/kWh * 0.35%) * $\frac{1MBTU}{1,000,000}$ = 3150 * 0.001 = 3.15 MBTU/Hr(a) Heat Rate Adjusment (Operating Range)	$\frac{Value}{9,000.0} \\ 0.35\% \\ 3.15 \\ 0 * \frac{1MB7}{1,000,00} \\ J \\ BTU * 1,000 \\ Value \\ Value$	Units BTU/kWh MBTU/Hr $\frac{\Gamma U}{0 BTU} * 1,000 \frac{kW}{MW}$ $0 \frac{kW}{MW} * 100 MW$ Units		
IIIIIIIIIIIIIIIHeat Rate Adjustment (Non-Steady State Operation)Top Operating Point Heat RateHeat Rate Loss Factor (Max per M15)Heat Rate LossHeat Rate Loss = (Economic Maximum Heat Rate * 0.35%)* Economic Maximum MWHeat Rate Loss = (9,000BTU/kWh * 0.35%) * $\frac{1MBTU}{1,000,000}$ = 3150 * 0.001 = 3.15 MBTU/Hr(a) Heat Rate Adjusment (Operating Range)Fuel Cost Adder - Operating Range	$\frac{Value}{9,000.0}$ $\frac{0.35\%}{3.15}$ $\frac{1MB7}{1,000,00}$ $\frac{J}{BTU} * 1,000$ $\frac{Value}{$3.50}$	Units BTU/kWh MBTU/Hr $\frac{1}{0}$ BTU * 1,000 $\frac{kW}{MW}$ 0 $\frac{kW}{MW}$ * 100 MW Units \$/Hr/MW of Regulation ,		

$= \left(\frac{\text{(Difference * Fuel Cost)}}{\text{(Econon)}} \right)$	nic Maximum	n MW —	Regulation Minimum MW)
Fuel Cost Adder = $\begin{pmatrix} (140 \text{ MBTU/H}) \\ \end{pmatrix}$	Ir * \$1.50/ ME	BTU)/(1	$100 \text{ MW} - 40 \text{ MW} = \frac{210}{60}$
= \$3.50 /Hr/MW			
(b) Margin/Risk Adder			Value Units
Margin/Risk Adder			\$12.00 \$/Hr/MW of Regulation
		_	
MAXIMUM CAPABILITY OFFER	Value	<u>Units</u>	
<u>a+pHeat Rate Adjustment(Operating</u> Range) + Margin Adder	<u>15.5</u>	<u>\$/Hr/N</u>	IW of Regulation
Historic Mileage Ratio			Value
Ratio			5
** This value is an example substitute	e for the and	nual av	verage value for RegA.
(c) Heat Rate Adjustment (Non Steady-State	Operation)	_	Value Units
Fuel Cost Adder - Non Steady-State Operation			\$0.50 \$/Hr/MW of Regulation
	(Heat Rate	Loss *	Fuel Cost)
	(meat hate		
Fuel Cost Adder =	= Regulat	tion Ba	ind MW
Fuel Cost Adder = (3.15 MBTU	Regulat /Hr * \$1.50/	tion Ba /MBTU	Ind MW
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$	= (Heat Nate Regulat /Hr * \$1.50/ 10 MW	tion Ba /MBTU	$\frac{100}{10} = \frac{5}{10} = $0.50/Hr/MW$
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$	Regulat /Hr * \$1.50/ 10 MW	tion Ba /MBTU	$\frac{10}{10} = \frac{5}{10} = $0.50/Hr/MW$
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$	- (flear Nate Regulat /Hr * \$1.50/ 10 MW	tion Ba /MBTU	$\frac{(M)}{M} = \frac{5}{10} = $0.50/Hr/MW$
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$ (d) VOM Adder Regulation VOM Adder	Regulat /Hr * \$1.50/ 10 MW	tion Ba /MBTU	$\frac{(MW)}{1} = \frac{5}{10} = $0.50/Hr/MW$ Value Val
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$ (d) VOM Adder Regulation VOM Adder	= (freat Nate Regulat /Hr * \$1.50/ 10 MW	tion Ba /MBTU	$\frac{(M)}{10} = \frac{5}{10} = \$0.50/\text{Hr/MW}$ Value Units $\$3.50 \ \text{$/Hr/MW of Regulation}$
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$ (d) VOM Adder Regulation VOM Adder MAXIMUM PERFORMANCE OFFER	Regulat /Hr * \$1.50/ 10 MW	tion Ba /MBTU	$\frac{(M)}{10} = \frac{5}{10} = \frac{0.50}{Hr}$
Fuel Cost Adder = Fuel Cost Adder = (3.15 MBTU) (d) VOM Adder Regulation VOM Adder MAXIMUM PERFORMANCE OFFER (c+d)/Historic Mileage Ratio	(filear Nate Regulat /Hr * \$1.50/ 10 MW Value \$	tion Ba /MBTU	$\frac{(M)}{10} = \frac{5}{10} = \$0.50/\text{Hr/MW}$ $\frac{\sqrt{alue} \qquad Units}{\$3.50 \ \$/\text{Hr/MW of Regulation}}$ $\frac{\text{Units}}{\$3.50 \ \$/\Delta\text{MW}}$
Fuel Cost Adder = Fuel Cost Adder = (3.15 MBTU, (d) VOM Adder (d) VOM Adder MAXIMUM PERFORMANCE OFFER (c+d)/Historic Mileage Ratio	(fical Nate Regulat /Hr * \$1.50) 10 MW Value \$	tion Ba /MBTU 0.80	$\frac{(MW)}{10} = \frac{5}{10} = \$0.50/Hr/MW$ $\frac{\sqrt{alue} \qquad Units}{\$3.50 \ \$/Hr/MW \ of \ Regulation},$ $\frac{Units}{\$0 \ \$/\Delta MW},$
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$ (d) VOM Adder (d) VOM Adder Maximum Performance Offer Maximum Performance Offer	(Ilear Nate Regulat /Hr * \$1.50/ 10 MW Value \$ fer	tion Ba /MBTU	$\frac{(M - MW)}{10} = \frac{5}{10} = \$0.50/Hr/MW$ $\frac{\sqrt{alue} \qquad Units}{\$3.50 \ \$/Hr/MW \ of \ Regulation}$ $\frac{Units}{0 \ \$/\Delta MW}$
Fuel Cost Adder = Fuel Cost Adder = (3.15 MBTU, (d) VOM Adder (d) VOM Adder (d) VOM Adder (c) VOM Adder MAXIMUM PERFORMANCE OFFER (c+d)/Historic Mileage Ratio Maximum Performance Off = [Fuel Cost	e (fiear Nate Regulat /Hr * \$1.50, 10 MW Value \$ fer Adder(Non	tion Ba /MBTU 0.80 Steady	$\frac{(MW)}{10} = \frac{5}{10} = \$0.50/Hr/MW$ $\frac{\sqrt{alue} \qquad Units}{\$3.50 \ \$/Hr/MW \ of Regulation},$ $\frac{Units}{10} \ \$/\Delta MW$
Fuel Cost Adder = Fuel Cost Adder = (3.15 MBTU) (d) VOM Adder (d) VOM Adder (d) VOM Adder (c+d)/Historic Mileage Ratio Maximum Performance Off = [Fuel Cost + Regulation	real Nate Regulat /Hr * \$1.50/ 10 MW Value \$ fer Adder(Non n VOM Adde	tion Ba /MBTU 0.80 Steady er]/ His	$\frac{(MW)}{10} = \frac{5}{10} = \$0.50/Hr/MW$ $\frac{\sqrt{alue} \qquad Units}{\$3.50 \ \$/Hr/MW \ of Regulation},$ $\frac{Units}{10} \ \$/\Delta MW$ $\frac{Value}{10} \ \frac{Value}{10} \ \frac{Value}{10} = \$0.50/Hr/MW$
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$ (d) VOM Adder (d) VOM Adder (d) VOM Adder (d) VOM Adder (c) VOM Adder <u>Maximum Performance Offer</u> (c+d)/Historic Mileage Ratio Maximum Performance Off = [Fuel Cost + Regulation Fuel Cost Adder = [\$0.50/H	fer Adder(Non n VOM Adde Ir/MW + \$3	tion Ba /MBTU 0.80 Steady er]/ His .50/Hr	ind MW () $= \frac{5}{10} = \$0.50/Hr/MW$ Value Units \$3.50 $$/Hr/MW$ of Regulation , Units 0 $\$/\Delta MW$, V State Operation) storic Mileage Ratio \because/MW / 5 $\Delta MW/MW$
Fuel Cost Adder = Fuel Cost Adder = $\frac{(3.15 \text{ MBTU})}{(3.15 \text{ MBTU})}$ (d) VOM Adder (d) VOM Adder (d) VOM Adder (d) VOM Adder (c) VOM Adder Maximum Performance OFFER (c+d)/Historic Mileage Ratio Maximum Performance Off = [Fuel Cost + Regulation Fuel Cost Adder = [\$0.50/H = \$0.80/Hr/M	fer Adder (Non n VOM Adde Ir/MW + \$3 MW of Regul	tion Ba /MBTU 0.80 Steady er]/ His .50/Hr .ation	$\frac{(MW)}{10} = \frac{5}{10} = \$0.50/Hr/MW$ $\frac{\sqrt{alue} \qquad Units}{\$3.50 \ \$/Hr/MW of Regulation},$ $\frac{Units}{\$3.50 \ \$/Hr/MW}$ $\frac{Value}{Value} = \frac{Value}{Value} $

Base Prices		
	Fuel Cost (TFRC):	\$1.50/MBTU

741112

Heat Rate Adjustment (Operating Range)	
Unit Base Load Heat Rate Fuel Input =	9,000 * 40 / 1000 = 360.0 MBTU/Hr
Unit Reduced Load Heat Rate Fuel Input =	12,500 * 40 / 1000 = 500.0 MBTU/Hr
Difference =	140.0 MBTU/Hr
Heat Rate Adjustment (Non Steady-State Ope	eration)
Top Operating Point Heat Rate =	9,000 Btu/kWh
Heat Rate Loss Factor =	0.35%
Heat Rate Loss =	(9,000*0.35%) * 100 MW / (1000 kW/MW)
	= 3.15 MBTU/Hr
Total Regulation Cost:	
(a) Heat Rate Adjustment (Operating Range)	
Fuel Cost Adder Operating Range =	140.0 MBTU/Hr * \$1.50/MBTU / 60 MW Operation Band
	= \$3.50/Hr/MW of Regulation
(b)Heat Rate Adjustment (Non Steady-State Op	eration)
Fuel Cost Adder-Non Steady-State Operation	= 3.15 MBTU/Hr * \$1.50 MBTU / 10 MW Regulation Band
	= \$0.47/Hr/MW of Regulation
(c) \/OM_Adder	
Regulation VOM Adder	\$3 50/Hr/MW of Regulation (for a Steam Unit)
(d) Margin/Risk Adder	
Margin/Risk Adder =	\$12.00/Hr/MW of Regulation
Total Regulation Cost	
Total Regulation Cost =	(a) Fuel Cost Adder (Operating Range) + (b) Fuel Cost
	Adder (Non Steady-State Operation) + (c) VOM Adder +
	(d) Margin/Risk Adder
Total Regulation Cost =	\$3.50 + \$0.47 +3.50 + \$12.00
+otal Regulation Cost =	\$19.47/Hr/MW of Regulation

Exhibit 6: Regulation Maximum Allowable Cost Adder Example

Section 11: Energy Storage

11.8 Regulation Cost

Note: The information in Section 2.8 contains basic Regulation Cost information relevant for all unit types. The following additional information only pertains to battery and flywheels units.

For a Battery or Flywheel Units shall calculate Energy Storage unit Losses in accordance with the equation below. to be consistent with other PJM units within this manual, the term<u>The</u> "Cost Increase due to Heat Rate Increase during non-steady state operation" is used to account for the energy losses experienced by an energy storage device while providing regulation service. Tand the "Fuel Cost Increase and Unit Specific Heat Rate Degradation due to Operating at lower loads" shall be equal to zero.

If a Unit Owner wishes to change its method of calculating these losses, the PJM Member shall submit a cost policy to the PJM MMU pursuant to the Cost and Methodology Approval Process. The approved method of calculation may be implemented upon approval and may be updated no more frequently than once every 12 months. If any action by a government or regulatory agency external to a Unit Owner that results in a need for the Unit Owner to change its method of cost calculation, the affected PJM Member may submit a request, or notification as appropriate, to the PJM MMU for evaluation, pursuant to the Cost and Methodology Approval Process.

Energy Storage Unit Fuel Cost IncreaseLosses (\$/MW) – shall be the calculated average of seven (7) days of rolling hourly periods where the real time bus LMP (\$/MWh) at the plant node is multiplied by the net energy consumed (MWh) when regulating divided by the regulation offer (MW). The seven (7) days of rolling hourly periods shall consist of the unit's last 168 hour periods with accepted regulation offers. The following equation governs energy storage unit's fuel cost increase:

Energy Storage Unit Fuel Cost IncreaseLosses(\$/MW) $= Average of 7 Days{ (Hourly LMP <math>(\frac{\$}{MWh}) * Hourly Net Energy Consumed(MWh)) \\ Hourly Accepted Regulation Offers (MW) }$ Capability costs to provide Regulation sService from a unit shall include the following components up to but not exceeding: Capability Regulation Costs (\$ / MW) \leq Margin Risk Adder Performance costs to provide Regulation sService from a unit shall include the following components up to but not exceeding: Performance Costs (\$ / AWW) \leq Performance Regulation SService from a unit shall include the following components up to but not exceeding:

Cost Increase in VOM + (Energy Storage Unit Fuel Cost Increase)